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Abstract

We investigate experimentally and theoretically the e7ects of an in-plane magnetic 'eld on the two-dimensional (2D)
electron gas via a shift of the Fermi energy in the interband magnetoabsorption. It is shown that the Fermi edge may either
shift up (blue) or down (red) in an in-plane magnetic 'eld. The shift depends on the relative strength of two components:
(i) the diamagnetic shift of subband edge and (ii) an increase of the 2D density of states which lowers the Fermi energy
with respect to the subband edge.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The two-dimensional (2D) electron gas in a mag-
netic 'eld has been an attractive system both for theo-
retical and experimental studies. The reduced dimen-
sionality of the system makes its properties substan-
tially di7erent from those of bulk crystals.
The case of the magnetic 'eld directed perpendicu-

lar to the plane of the structure has been most widely
investigated. In this con'guration, electron/hole mo-
tion in the quantum well plane is quantized by the
magnetic 'eld while motion along-the-'eld is quan-
tized due to the con'ning potential of the well. As a
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result, the step-like 2D density of states transforms
in a magnetic 'eld into a highly degenerate �-like
0D density of states corresponding to the Landau
Levels.
The situation when the magnetic 'eld is in the

plane of the well has been less investigated. In this
case, there are no dramatic changes in the nature of
the motion of the electron. The in-plane motion re-
mains quasi-free and the density of states maintains
a step-like form. Here, the magnetic 'eld has two
e7ects. First, it produces a diamagnetic shift of the
subband energies. In addition, it increases the 2D den-
sity of states, resulting from the anisotropy of the
electron e7ective mass in the plane of the structure:
motion along the 'eld remains untouched while the
e7ective mass in the direction perpendicular to the
'eld increases with increasing magnetic 'eld [1,2].
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Fig. 1. Schematic diagram of evolution of the Fermi energy in
the in-plane magnetic 'eld. The gray region represents density of
states in zero 'eld. In the magnetic 'eld, the subband energy E0
is diamagnetically shifted. Nevertheless, due to increase of the 2D
density of states, Ef may reveal red shift.

The most popular methods to probe the inBuence
of in-plane magnetic 'eld on the electronic states in
quantum heterostructures are the study of Shubnikov–
de Haas oscillations [3–5] and far-infrared cyclotron
resonance [5] in tilted magnetic 'elds. The strong
in-plane component of the magnetic 'eld in these
experiments induces changes in the in-plane electron
e7ective mass. This in turn a7ects the Landau quanti-
zation resulting from the small perpendicular part of
the magnetic 'eld.
We investigate the e7ects of an in-plane magnetic

'eld by direct measurement of the shift of the Fermi
energy in interband magnetoabsorption experiments.
This allows us to simultaneously study both the dia-
magnetic shift of the subband energies as well as
changes to the density of states. Indeed, the evolu-
tion of the Fermi edge in the in-plane magnetic 'eld
depends on both of these processes, and as a result,
can either go up or down with the application of an
in-plane magnetic 'eld. If the diamagnetic e7ect dom-
inates, the Fermi energy reveals a blue shift, while in
the opposite case it is red shifted (see Fig. 1). Due to
the competition between these two mechanisms, the
position of Fermi edge becomes sensitive to carrier
concentration and details of energy band structure.

2. Theory

We consider electronic states in a quantum well
with a con'ning potential V (y) in the in-plane

magnetic 'eld B= (0; 0; B). By choosing the Landau
gauge for the vector potentialA=(−yB; 0; 0) the elec-
tron energy and wave function can be presented in the
form

� =
1√
S
eikxxeikzz�(y); (1)

E = 
+
˝2k2x
2m∗ +

˝2k2z
2m∗ ; (2)

where S is the sample area. Energy 
 and function
� are solutions of 1D SchrLodinger equation with
Hamiltonian

Ĥ =
p̂2

y

2m∗ + V (y) +
˝kxeB
m∗c

y +
e2B2

2m∗c2
y2: (3)

For a parabolic con'ning potential V (y) an exact so-
lution exists [6]. In the general case, the last two terms
in the Hamiltonian (3) can be treated as a perturba-
tion for small magnetic 'elds. The use of perturbation
theory is justi'ed if the magnetic 'eld-induced cor-
rections are much smaller than the energy di7erence
between the unperturbed states. Let 
(0)i and  i be so-
lutions of the unperturbed Hamiltonian. Then the dia-
magnetic shift of size-quantized energy levels is given
by the 'rst-order expression


(1)i =
e2B2

2m∗c2
〈y2〉ii ; (4)

where 〈: : :〉ij = 〈 i| : : : | j〉. For simplicity, we assume
that the potential V (y) has reBection symmetry and
thus parity is a good quantum number. Hence, only
the last term in Eq. (3) contributes to (4). Since the
diamagnetic shift is proportional to 〈y2〉ii, it increases
with increase of the subband quantum number i.
Our calculations show that the main contribution to

the second-order correction 
(2)i comes from the near-
est lying localized states with j = i ± 1. If the ith
state in the quantum well has no higher lying local-
ized states, then the contribution from the continuous
spectrum should be taken into account. For the ground
state (i = 0), the second-order correction is


(2)0 ≈ −˝
2k2x
2m∗

2e2B2

m∗c2
〈y〉201
OE

; (5)

where OE=
(0)1 −
(0)0 is the energy di7erence between
the ground and the 'rst excited states in the quantum
well. Note that since the energy correction depends on
kx, the conditions for validity of perturbation theory
can be violated for large kx even in small magnetic
'elds.
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The energy spectrum for the ground subband is

E ≈ 
(0)0 + 
(1)0 +
˝2k2z
2m∗ +

˝2k2x
2m⊥

; (6)

where 
(0)0 is given by Eq. (4) and

1
m⊥

=
1
m∗

(
1− 2e2B2

m∗c2
〈y〉201
OE

)
(7)

is the new e7ective mass in the direction perpendicular
to the 'eld and in the plane of the quantum well. Elec-
trons become heavier in the direction perpendicular to
the 'eld. Note that the increase of the perpendicular
e7ective mass m⊥ in the magnetic 'eld always occurs
only for ground-state subband. For excited subbands,
second-order correction may be positive and m⊥ may
decrease in the magnetic 'eld.
The 2D density of states for dispersion (6) has the

form

�2D =




0; E ¡ 
(0)0 + 
(1)0 ;

S
�˝2

√
m∗m⊥; E ¿ 
(0)0 + 
(1)0 :

(8)

The Fermi energy thus reads

Ef = E0(B) +
�˝2n√
m∗m⊥

; (9)

where n is 2D carrier concentration and E0(B)=
(0)0 +

(1)0 . Here, we assume that only lowest subband is oc-
cupied Ef ¡E1.
From Eq. (9), the Fermi energy shift is determined

by both the diamagnetic shift of subband energy and
the change of the density of states resulting from
the in-plane magnetic 'eld. The combined e7ect of
these two mechanisms was studied by Salis et al.
[3] where for the case of two occupied subbands
(E1 ¡Ef ¡E2), they considered the process of car-
rier redistribution in the in-plane 'eld. Note, that in
their case both mechanisms act in the same direc-
tion, resulting in the depopulation of higher lying
subband. In our case, the diamagnetic shift increases
the Fermi energy while the change of the density of
states acts in opposite direction. The evolution of Ef
is thus determined by the competition between these
two processes as shown in Fig. 1. As a result, the
magnetic 'eld dependence of Fermi edge becomes
sensitive to the carrier concentration and details of
energy structure. This can be seen explicitly if we
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Fig. 2. Absorption spectra (a) and evolution of Fermi edge
(b) in the in-plane magnetic 'eld in n-doped 70- PA wide
In0:19Ga0:81As=Al0:41Ga0:59As quantum well.

expand the square root in Eq. (9) in powers of B

Ef ≈ Ef (0) +
e2B2

2m∗c2

(
〈y2〉00 − 2〈y〉201

Ef (0)
OE

)
; (10)

where Ef (0) is zero 'eld Fermi energy with respect
to the subband bottom. The exact behavior of Fermi
energy in the magnetic 'eld is determined by the ratio
Ef (0)=OE and by the matrix elements of coordinates
on unperturbed functions.
Electrostatic interaction between carriers and

ionized impurities in modulation doped structures
changes the initial shape of quantum well potential
a7ecting the energy spectrum and wave functions.
To obtain quantitative results one should solve the
SchrLodinger and Poisson equations self-consistently
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[7]. This is not our aim in the present work. To get
a qualitative picture we consider a deep rectangular
quantum well of width L with wave functions

 0 =

√
2
L
cos

(�y
L

)
;  1 =

√
2
L
sin

(
2�y
L

)
: (11)

By substituting the wave functions (11) into Eq. (10),
we obtain

Ef ≈ Ef (0) +
e2B2L2

60m∗c2

(
1− 2

Ef (0)
OE

)
: (12)

If the Fermi energy in zero magnetic 'eld (Ef (0))
is higher than half of the energy separation between
the ground and 'rst excited states in quantum well,
then the Fermi energy should red shift in the mag-
netic 'eld. In the opposite case it should be blue
shifted. Using oscillator wave functions instead of
Eq. (11) will produce the same result. The critical
value of ratio Ef (0)=OE that separates “blue shift” and
“red shift” behavior of Fermi energy is also one half.

3. Experiment and discussion

Our experiment was performed on n-type modula-
tion doped 70- PA wide In0:19Ga0:81As=Al0:41Ga0:59As
quantum well. Fig. 2 presents the absorption spectra
and shift of the Fermi edge as a function of the in-plane
magnetic 'eld. Data for magnetic 'elds up to 30 T
were obtained in a steady resistive magnet, while for
higher 'elds, a pulsed magnet was used.
In agreement with the second-order perturbation re-

sult, the position of the Fermi edge changes quadrati-
cally for small 'elds. In our sample, the Fermi energy
decreases with an increase of the 'eld. As seen from
Eq. (10), the exact behavior (increase or decrease as
a function of in-plane 'eld) of the Fermi energy is
determined by the ratio Ef (0)=OE and details of the
con'ning potential. Shubnikov–de Haas oscillations
indicate that the 2D carrier concentration in our sample
is n=1:42×1012 cm−2. For the electron e7ective mass,
we used the In0:19Ga0:81As bulk value m∗ = 0:057m0,
calculated by a 30-band k · p model [8]. This gives
us an estimated Fermi energy in zero magnetic 'eld
of Ef (0) ≈ 60 meV. Far-infrared intersubband reso-
nance experiments gave us the value of the energy
separation between the ground and 'rst excited sub-
bands OE ≈ 170 meV. The ratio Ef (0)=OE ≈ 0:35
and according to Eq. (12), we should expect, in deep
rectangular quantum well, a blue shift of Fermi en-
ergy in the magnetic 'eld. The fact that a red shift

of Ef is observed indicates that the high carrier con-
centration and the strong electrostatic interaction with
ionized impurities signi'cantly modi'es the shape of
con'ning potential.
It is seen from Fig. 2 that at magnetic 'elds above

30 T, the Fermi energy increases. This behavior is
beyond second-order perturbation theory. Since the
corresponding magnetic 'elds ∼ 30 T could still be
treated as perturbation for our sample, we believe that
higher order calculations may describe the change of
character of Fermi energy evolution.

4. Conclusions

We have investigated the e7ects of in-plane mag-
netic 'eld on the 2D electron gas by direct study of
position of Fermi energy. As a result of competition of
diamagnetic shift of subband energies and increase of
2D density of states, the Fermi energy evolution in the
in-plane 'eld is sensitive to the carrier concentration
and details of energy structure. second-order pertur-
bation theory was used to obtain the main features of
magnetic 'eld dependence of the Fermi energy. Ex-
periments indicate the necessity of higher order cal-
culations to describe the evolution of the Fermi edge
in high in-plane magnetic 'elds.
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