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Abstract: This paper summarizes our recent advances in the spectroscopy of single-walled carbon nanotubes 
(SWNTs) in the terahertz (THz) range. Using polarization-dependent time-domain THz spectroscopy, we have 
studied the anisotropic conduction properties of free carriers in a thin film of highly aligned SWNTs. When the THz 
polarization was parallel to the nanotube alignment direction, there was strong absorption, while virtually no 
absorption was observed when the THz polarization was perpendicular to the nanotube axis. Through a proper model, 
the THz complex dynamic conductivity of the SWNTs was extracted and showed a non-Drude-like frequency 
dependence, with the real part monotonically increasing with increasing frequency and exhibiting a peak around 4.5 
THz. Furthermore, the reduced linear dichroism was calculated to be 3, which demonstrates the nematic order 
parameter to be 1. This indicates that the alignment of the nanotubes is “perfect” and any misalignment must have 
characteristic length scales much smaller than the wavelengths used in these experiments (1.5 mm – 150 μm). 
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1. Introduction 

Single-walled carbon nanotubes (SWNTs) represent one of the most direct realizations of a 
one-dimensional (1-D) electron system available today. Since their discovery in 1993 [1,2], their 
exotic physical, chemical, and mechanical properties have been extensively studied [3-5]. They 
are one of the leading candidate technologies to unify electronic and optical functions in 
nanoscale circuits. At the same time, they provide ideal model 1-D condensed matter systems in 
which to address fundamental theoretical questions in many-body physics. 

A number of experimental THz / far-infrared (FIR) spectroscopic studies have been performed 
over the last decade on SWNTs of various forms [6-15], producing an array of conflicting results 
with contradicting interpretations. This is partly due to the widely differing types of samples used 
in these studies – grown by different methods (HiPco, CoMoCAT, CVD, and laser ablation) and 
put in a variety of polymer films that are transparent in the THz range. Nanotubes in most of 
these samples were bundled and typically consist of a mixture of semiconducting and metallic 
nanotubes with a wide distribution of diameters. Some of the samples used were partially aligned 
through mechanical stretching, showing some degree of anisotropy in their THz response 
[9,10,12]. One common spectral feature that many groups have detected is an absorption peak 
around 135 cm-1 (or ~4 THz or ~17 meV).  This feature, first observed by Ugawa et al. [7] in the 
real part of the conductivity, has been interpreted as interband absorption in metallic (or mod 3) 
nanotubes with curvature-induced gaps [7,14,15] or absorption due to classical plasmon 
oscillations along the tube axis [12], but a consensus has not been achieved. 

26 

mailto:kono@rice.edu


Terahertz Science and Technology,  ISSN 1941-7411                                         Vol.3, No.1, March 2010 

In this paper, we review our recent work on the dynamic (also known as the AC or optical or 
frequency (ω) dependent) conductivity σ(ω) of SWNTs. Much information on carrier states and 
dynamics in metals can be obtained through such measurements. The classical Drude formula 
σ(ω) = σ(0)/(1-iωτ) (where τ is the momentum relaxation time), which works well for ordinary 
metals at room temperature, is expected to fail when electron-electron interactions or disorder (or 
both) is a significant perturbation to the unperturbed single-particle states. Many-body effects can 
affect the temperature (T) and magnetic field (B) dependences of the conductivity σ(ω,T,B), 
sometimes in very specific ways, making this a very useful method for comparing with 
theoretical calculations. In particular, we have observed strongly anisotropic THz response of 
highly-aligned SWNTs. There was virtually no attenuation (strong absorption) when the THz 
polarization was perpendicular (parallel) to the nanotube axis. The dynamic complex dielectric 
conductivity tensor elements were determined, and the real part of the parallel conductivity 
showed a non-Drude-like frequency dependence. 

 

2. Experimental Methods 

The films of highly-aligned SWNTs used in this study were fabricated using the methods 
described in Ref. [16]. The as-grown lines of aligned SWNTs initially adopt a vertical orientation 
with respect to the growth substrate, with a length determined by the growth duration.  
Following the growth process, a high temperature (750°C) H2O vapor etch was employed to free 
the catalyst-SWNT interface, allowing efficient transfer of an aligned film to a host substrate of 
choice (sapphire in our case). This transfer method relies on the simple concept of strong 
side-wall van der Waals adhesion between SWNTs and the transfer substrate, and weaker 
SWNT-end interaction with the growth substrate. This is analogous to the mechanism behind the 
“Gecko” effect [17]. The result of the transfer process is a homogenous film (initially ~2 µm 
thick) that remains as-grown, highly aligned, and free of exposure to any sort of solvent or liquid.  
Fig. 1 shows scanning electron microscope images of the SWNT alignment present in such a 
transferred film, emphasizing the high degree of alignment, which makes this film well-suited for 
the study presented in this work. 

   
Fig. 1 Scanning electron microscope images of highly-aligned single-walled carbon nanotubes on the growth 

substrate (left) and after a transfer to the sapphire substrate (middle, right). The nanotubes are vertically 
aligned on the growth substrate, while they are horizontally aligned on the sapphire substrate. The length of 
the nanotubes is very uniform and determined by the growth duration. 

We used two THz setups in this study.  The main THz setup we utilized was a typical 
time-domain THz spectroscopy system based on photoconductive antennas, where both the THz 
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emitter and detector were made of low-temperature grown GaAs [18,19].  The THz beam 
obtained from such an emitter was already highly linearly polarized, but a free standing wire-grid 
polarizer with a degree of polarization of more than 99.5% in this range was placed in the path of 
the incident THz beam (8 inches both from the emitter and sample) to ensure the high degree of 
polarization of the THz beam incident on the sample.  The second THz system we employed 
had a DAST crystal as the emitter, which extended the usable frequency range to ~5 THz.  As 
schematically shown in the inset of Fig. 2, the SWNT sample was rotated about the propagation 
direction of the THz wave, which changed the angle, θ, between the nanotube axis and the THz 
electric field polarization direction from 0° to 90°. Thus, polarization-dependent THz 
transmission measurements were performed on both the SWNT film sample on a sapphire 
substrate and a reference sapphire sample with the same thickness as the sample substrate. 

 

3. Experimental Results and Discussion 

Fig. 2 shows transmitted time-domain waveforms for four different angles (θ = 0°, 30°, 45°, 
and 90°), together with the waveform transmitted through a reference sapphire substrate with no 
nanotubes (dashed line with open circles). Note that the 90-degree trace precisely coincides with 
the reference waveform, indicating that there is no attenuation by going through the film when 
the polarization is perpendicular to the nanotube alignment direction. When θ = 0° (parallel 
polarization), on the other hand, the THz wave is strongly absorbed by the nanotubes. 
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Fig. 2 Transmitted THz electric field signals for the reference sapphire substrate (dashed curve with circles) and for 

the nanotube film for different polarization angles (colored solid curves).  The THz wave is most strongly 
attenuated when the THz polarization is parallel to the tube alignment direction (θ = 0°), whereas there is no 
attenuation within the experimental accuracy for the perpendicular case (θ = 90°). 

Strongly anisotropic THz absorption is better seen in the frequency domain after 
Fourier-transforming the time-domain waveforms and calculating absorbance spectra, as shown 
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in Fig. 3. Here, we plot the absorbance, A = −Log10(T), as a function of frequency in the 0.2-1.8 
THz range, where T is the transmittance defined as T = |Es/Er|2 and Es and Er are the complex 
THz signals in the frequency domain for the sample and reference, respectively. From this figure, 
we can clearly see that as the angle θ increases from 0° to 90°, the absorbance of the SWNTs 
decreases monotonically. When θ = 90°, the absorbance is zero throughout this frequency range.  
On the other hand, when θ = 0°, the absorbance is finite and high; it increases with increasing 
frequency, reaching a value over 1.0 at 1.8 THz. The 30° and 45° absorbance lines show the same 
trend as the 0° curve but with smaller amplitudes.   
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Fig. 3 THz absorbance spectra for the SWNT film for four different polarization angles. As the angle between the 

THz polarization and nanotube alignment direction increases, the absorbance monotonically increases. 

In order to quantify the degree of alignment of SWNTs in this film from these THz 
transmission data, we employ a data analysis procedure developed for studying anisotropic 
optical properties of SWNTs in the optical range [20]. Fig. 4(a) plots the parallel (A//) and 
perpendicular (A⊥) absorbance spectra, corresponding to θ = 0° and 90°, respectively. Also 
plotted in Fig. 4(a) is the isotropic absorbance defined as A0 ≡ (A// + 2A⊥)/3, which represents the 
absorbance expected if the nanotubes were randomly oriented [20]. Finite alignment moves up 
(down) A// (A⊥) with respect to A0 and induces a finite linear dichroism, LD = A// − A⊥, shown in 
Fig. 4(b). However, it is the reduced linear dichroism, LDr ≡ LD/A0, that provides a normalized 
measure of alignment. For example, LD increases with the film thickness, while LDr remains the 
same. From a microscopic viewpoint, the LDr can be expressed as 

                            LDr = 3[(3cos2α − 1)/2]·S,                           (1) 

where α is the angle between the long axis and the direction of the dipole moment and S is the 
nematic order parameter (= 0 when the nanotubes are randomly oriented and = 1 when the 
nanotubes are perfectly aligned). Fig. 4(b) indicates that within our experimental range LDr is 
nearly constant at 3, which, combined with Eq. (1), indicates that S ~ 1, assuming that α = 0.  
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Note that any finite value of α would result in a value of S that is larger than 1, which is 
impossible by definition. Therefore, the fact that LDr ~ 3 proves not only that the nanotubes are 
well aligned (S ~ 1) but also that the THz response of SWNTs is intrinsically anisotropic (α ~ 0).  
Finally, as an important parameter for a polarizer, we calculated the degree of polarization, P = 
(A// − A⊥)/(A// + A⊥), which is plotted in Fig. 4(c). As shown, it is very close to 1 throughout the 
entire frequency region. All of these data suggest that this THz polarizer is of excellent quality. 
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Fig. 4 (a) Parallel (A//), perpendicular (A⊥), and isotropic (A0) absorbance, (b) linear dichroism (LD) and reduced 
linear dichroism (LDr), and (c) degree of polarization (DOP) as a function of frequency, measured for the 
aligned SWNT film. 

The increasing absorbance with frequency in this spectral range is consistent with previous 
far-infrared spectroscopy results on various types of SWNT samples showing a robust absorption 
peak around 4 THz, whose origin is not understood [7-15]. The dynamic complex conductivity 
tensor elements, extracted from our data, are shown in Fig. 5. Again, extremely anisotropic 
responses are observed. At 90°, when the THz polarization is perpendicular to the nanotube axis, 
the real part of the conductivity is zero, showing no sign of absorption. This should be contrasted 
to the 0° case, when the THz polarization is parallel with the nanotubes, the conductivity is ~ 80 
S·cm-1 at 1.8 THz.  In addition, the dynamic conductivity shows a non-Drude frequency 
dependence, with the real part monotonically increasing with increasing frequency between 0.2 
THz and 1.8 THz. Furthermore, we made additional measurements using a THz-TDS system 
based on a DAST crystal to extend the frequency range up to ~5 THz and observed a peak at ~4 
THz, as shown in the inset of Fig. 5(left). 
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Fig. 5 (a) Real and (b) imaginary parts of parallel and perpendicular elements of the dynamic conductivity tensor for 

the aligned SWNT film extracted from the THz time-domain signals. Inset: Real part of the parallel and 
perpendicular elements of the dynamic conductivity tensor for the aligned SWNT film up to ~5 THz extracted 
from data taken with a DAST-based THz time-domain spectroscopy setup. 

 

4. Conclusions  

Terahertz time-domain spectroscopy of a highly-aligned single-walled carbon nanotube film 
reveals strongly anisotropic responses. The deduced complex dynamic conductivity clearly 
showed a non-Drude-like frequency dependence, with the real part showing a peak at ~ 4 THz. 
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