
Comment on “Single Crystals of
Single-Walled Carbon Nanotubes
Formed by Self-Assembly”

Schlittler et al. (1) reported the production of
single crystals of single-walled carbon nano-
tubes (SWCNTs) by the thermolysis of nano-
patterned structures of alternating layers of
C60 and nickel. Electron diffraction, high-
resolution phase contrast imaging, and elec-
tron energy loss spectroscopy (EELS) were
used to characterize the resulting crystals. In
this comment, we report the reproduction of
their experimental results; however, we dis-
agree with their interpretation of the data. We
suggest that the crystals formed in our exper-
iments consist not of SWCNTs, but rather of
calcium molybdenum oxide.

Multilayered structures, around 100 nm
tall (300 nm in diameter) and consisting of 11
alternating layers of Ni and C60, were pat-
terned on Mo transmission electron micro-
scopy (TEM) grids (Fig. 1A) in a special
vacuum evaporation apparatus (2) as de-
scribed in (1). The patterned grids were an-
nealed inside a TEM microscope (Philips
400) using a heating holder (Gatan 652). The
estimated magnetic field in this arrangement
was on the order of 1 T; however, other
annealing treatments ranged from no applied
field up to a field of 7 T (3). The grids were
typically outgassed at 200°C for 10 min and
then ramped at 20°C/min to temperatures of
900 to 1000 °C.

The results of numerous annealing experi-
ments can be summarized as follows: No fac-
eted crystals were observed emerging from the
multilayer stacks, which assumed a variety of
interesting morphologies (Fig. 1B). However,
long, thin nanocrystals matching the description
in (1) were randomly scattered on the grids—
that is, found in regions of the grids that were
free of any deposited structures (Fig. 1C).
These were easily distinguishable from the
short, stubby, nanocrystals that were observed
on etched regions on unannealed, as-received
Mo TEM grids (as shown in Fig. 1A). Finding
the long nanocrystals so far from the patterned
multilayer stacks suggested that the two were
unrelated, so as-received Mo TEM grids (300
mesh, EMS) were subjected to the same anneal-
ing treatment (950°C), and long, thin, nano-
crystals were again obtained. No effect of mag-
netic field on either the occurrence or the
orientation of the nanocrystals was observed.

These long, platelike crystals typically had a
high aspect ratio and faceted ends. When exam-
ined in situ or ex situ using a 100-kV con-

ventional TEM, the longitudinal fringes report-
ed in (1) were usually observed (Fig. 2, A and
B). Longitudinal fringes with spacings around
1-nm were also observed (Fig. 2, C and D)
in Z-contrast images from a 100 kV scanning
transmission electron microscope (STEM)

equipped with a high-angle, annular dark-
field (HAADF) detector (VG Instruments
HB501UX). Z-contrast images taken at higher
magnification revealed a complex atomic
structure with alternating light and dark fring-
es (Fig. 2D) and—an important observation—
lattice fringes parallel to the facets of the
crystals.

Simultaneous electron energy loss (EEL)
spectra were acquired during Z-contrast imag-
ing. In a typical EEL spectrum from near the
edge of a nanocrystal (Fig. 2E), the so-called

Fig. 1. C60/Ni multilayer stacks patterned on a
Mo TEM grid (A) before and (B) after thermol-
ysis. (C) Faceted crystals observed on regions of
Mo TEM grids (away from the multilayer
stacks) after thermolysis treatments.

Fig. 2. (A) Bright-field TEM image of long, faceted
crystals observed after annealing. (B) Enlarged
view of region indicated by red square in (A),
showing longitudinal fringes observed parallel to
the long axis of the crystals. (C and D) HAADF
(Z-contrast) STEM images show longitudinal
fringes and reveal crystal planes parallel to facets.
(E) Typical EEL spectra from a typical nanocrystal
shows Mo, Ca, O, and possible C. An EEL spectrum
from the Mo grid near the nanocrystal is shown
for comparison. C from contamination on the
edge of the nanocrystal is similar to the spectrum
in (1), but is not representative of graphitized C as
expected from SWCNT (a spectrum from SWCNT
bundles produced by laser vaporization is shown
for comparison).
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�* peak, characteristic of sp2-bonded carbon, is
clearly visible, as in (1). However, despite the
suggestion to the contrary in (1), this feature
cannot be used to infer the presence of graphite-
like sheets in the sample. For comparison, an
EEL spectrum recorded under similar condi-
tions from a bundle of SWCNTs (grown by
laser vaporization) is also shown in Fig. 2E.
Although the �* peak is still present, the shape
of the larger peak (known as the �* peak)
differs significantly between the two spectra,
with more features visible in the latter owing to
their graphene-based structure. A comparison
of the C-K edges in Fig. 2E [and figure 2 in (1)]
with spectra from different forms of carbon (4,
5) suggests that the carbon signal from the
crystals is due to amorphous carbon rather than
to carbon nanotubes. Because the carbon signal
was strongest at the edges of the nanocrystals,
the amorphous carbon is believed to be pre-
dominantly surface contamination and not a
major constituent of the crystals. An EEL spec-
trum from a typical nanocrystal (Fig. 2E) shows
that the main elements in the nanocrystals are
Ca, Mo and O (6).

Nanocrystals with longitudinal fringes
produced electron diffraction (ED) patterns
(Fig. 3, A and B) that were very similar to
that published in (1). The basic unit of the
pattern consisted of intense spots in roughly-
perpendicular directions, with additional,
weaker superlattice reflections located at 1/3,
1/2, and 2/3 of the larger reciprocal lattice
spacing (a�1 in Fig. 3). Tilting the crystals
over orthogonal axes varied the observed ED

lattice spacings from 0.15 � a � 0.3 nm and
0.5 � b � 1.02 nm. These diffraction results
indicate that the crystals are composed of
widely separated layers of complicated
atomic arrangements.

The structures of several molybdenum ox-
ides intercalated with calcium are consistent
with these diffraction results and the EELS
results discussed earlier. The stable phase of
MoO3 has a layered structure in which MoO6

octahedra connect at shared corners and edg-
es in one plane, leaving a layered structure in
the perpendicular direction. This structure is
easily modified by the insertion of a wide
variety of cations in the empty interstices of
the interlayer region (7). A number of calci-
um molybdenum oxide phases are known to
exist (8). From the ternary phase diagram, the
most likely compound to form in a Mo-rich and
Ca-poor environment with the observed d-spac-
ings is Ca5.45Mo18O32 (Fig. 3D). Using atomic
coordinates for this compound (9, 10), simula-
tions of dynamical diffraction patterns (Fig. 3C)
reproduce most of the electron diffraction fea-
tures observed experimentally (11). The only
major features not reproduced in the simula-
tions are the superlattice reflections at the 1/3,
1/2, and 2/3 positions, which the study of
Schlittler et al. (1) also did not reproduce (12).

In view of these data, we suggest that the
single crystals reported by Schlittler et al. (1)
were not composed of SWCNTs, but rather
represented molybdenum oxide intercalated
with calcium. These crystals formed as the
result of heating the molybdenum substrate

in an oxygen-containing environment. Cal-
cium, a common surface contaminant, is
readily incorporated between molybdenum
oxide layers. Under the appropriate condi-
tions, thermolysis of condensed-phase pre-
cursors has been shown to grow carbon
nanotubes (13, 14 ). As the experiments in
(1) and the reproduction of those experi-
ments reported here shows, however, the
introduction of reactive substrates and con-
taminants can result in nanocrystals with
most unexpected compositions.
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