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We present detailed theoretical calculations of two color, time-resolved pump-probe differential reflectivity
measurements. The experiments modeled were performed on InxMn1−xAs/GaSb heterostructures and have
shown pronounced oscillations in the differential reflectivity as well as a time-dependent background signal.
Previously, we showed that the oscillations resulted from a generation of coherent acoustic phonon wave
packets in the epilayer and were not associated with the ferromagnetism. Now we take into account not only
the oscillations, but also the background signal which arises from photoexcited carrier effects. The two color
pump-probe reflectivity experiments are modeled using a Boltzmann equation formalism. We include photo-
generation of hot carriers in the InxMn1−xAs quantum well by a pump laser and their subsequent cooling and
relaxation by emission of confined LO phonons. Recombination of electron-hole pairs via the Schockley-Read
carrier trapping mechanism is included in a simple relaxation time approximation. The time-resolved differ-
ential reflectivity in the heterostructure is obtained by solving Maxwell’s equations and by comparing the
experiments. Phase space filling, carrier capture and trapping, band-gap renormalization, and induced absorp-
tion are all shown to influence the spectra.
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I. INTRODUCTION

Dilute magnetic semiconductors �DMS� made of
�III,Mn�V materials have recently garnered much attention
owing to the discovery of carrier mediated ferromagnetism.
This offers the intriguing possibility of their use in the de-
velopment of semiconductor spintronic devices capable of
simultaneously performing information processing, data stor-
age, and communication functions.1–3

Time-independent optical studies such as cyclotron reso-
nance of III-V DMS materials have provided important in-
formation on effective masses and electronic structure,4 ex-
change parameters,5,6 carrier densities,7 and whether carriers
are localized or itinerant.8

Time-dependent optical studies are even more useful and
can provide information that static magnetization or electri-
cal transport measurements cannot. In this paper, we report
on our theoretical calculations and modeling of femtosecond,
time-resolved differential reflectivity spectroscopy of
InxMn1−xAs/GaSb heterostructures. Femtosecond transient
reflectivity spectroscopy has proven useful in studying car-
rier dynamics in semiconductors as well as the generation
and propagation of coherent phonons in a number of materi-
als. In particular, coherent optical phonons have been ob-
served in bulk semiconductors9,10 and coherent acoustic
phonons have been detected in InxGa1−xN/GaN-based semi-
conductor heterostructures.11–14

The experiments we model are two-color pump-probe dif-
ferential reflectivity measurements. In these experiments,
there are several changes to the reflectivity on different time

scales. On the fast time scale, there are changes to the reflec-
tivity associated with ultrashort carrier lifetimes ��2 ps� and
multilevel dynamics.

In addition, pronounced oscillations are observed on a
longer time scale ��23 ps period�.15 Similar behavior was
seen in InxGa1−xMnAs systems.16 Originally these oscilla-
tions were thought to be associated with the ferromagnetism
in the InxMn1−xAs layer since oscillations were not observed
in samples without Mn. However, we showed in a previous
work15 that the oscillations instead resulted from selective
photoexcitation in the InxMn1−xAs layer which triggered a
coherent phonon wave packet that propagated into the GaSb
layer.

In this paper, we expand upon our previous work and
show that the large strength of the coherent phonon oscilla-
tions results from a fortuitous strong dependence on the
strain of the GaSb dielectric function near the probe energy.
In addition, we also model the fast time dependent back-
ground signal which arises from the photoexcited carriers.
There are three main contributions to this transient back-
ground signal: �1� the enhanced Drude absorption resulting
from the photoinduced increase in free carriers, �2� the relax-
ation dynamics associated with the decay of the highly non-
equilibrium photoexcited carrier distribution, and �3� the
trapping and subsequent nonradiative recombination of pho-
toexcited carriers due to the high density of defects in the
InxMn1−xAs layer.

We model the experiments by first calculating the detailed
electronic structure in the InxMn1−xAs layer. We then use a
Boltzmann equation formalism to account for the photoex-
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cited carrier dynamics. We include band-gap renormaliza-
tion, carrier-phonon scattering, and carrier-trapping and/or
recombination through the Shockley-Read mechanism. To
determine the optical properties, we solve Maxwell’s equa-
tions in the heterostructure. Details of the experiments and
the calculations are given in the following sections.

II. EXPERIMENT

The main sample studied �shown schematically in Fig. 1�
was an InxMn1−xAs/GaSb heterostructure, consisting of a
25 nm thick magnetic layer with Mn concentration 0.09,
grown on a 820 nm thick GaSb buffer layer on a semi-
insulating GaAs �001� substrate. Its room temperature hole
density and mobility were 1.1�1019 cm−3 and 323 cm2/V s,
respectively, estimated from Hall measurements. Detailed
growth conditions and sample information can be found in
Ref. 17.

We performed two-color time-resolved differential reflec-
tivity spectroscopy using femtosecond midinfrared pump
pulses �2 �m, �140 fs� and a white light continuum probe
�0.5–1.4 �m, �340 fs�. Experimental details are described
in Ref. 18.

The source of intense mid infrared pulses was an optical
parametric amplifier �OPA� pumped by a Ti:sapphire-based
regenerative amplifier �Model CPA-2010, Clark-MXR, Inc.,
7300 West Huron River Drive, Dexter, MI 48130�. At the
pump wavelength �2 �m�, the photon energy �0.62 eV� was
just above the band gap of InxMn1−xAs, so the created carri-
ers had only a small amount of extra kinetic energy �
�0.2 eV at 15 K�, minimizing contributions from intervalley
scattering and intraband relaxation. A white light continuum
generated by focusing a small fraction of the CPA pulses into
a sapphire crystal was used as a probe, which allowed us to
probe a wide energy range far above the quasi-Fermi-level of
the optically excited carriers.

III. THEORY

A. Bulk InxMn1−xAs band structure

In our pump-probe reflectivity experiments carriers are
created in the InxMn1−xAs layer by pumping below the GaSb
band gap. We treat the photogenerated carriers �electrons and
holes� in an eight-band k ·p effective mass model which in-

cludes conduction electrons, heavy holes, light holes, and
split-off holes. Following Pidgeon and Brown19 we find it
convenient to separate the eight Bloch basis states into upper
and lower sets which decouple at the zone center. The Bloch
basis states for the upper set are

�1� = � 1
2 , + 1

2� = �S↑� , �1a�

�2� = � 3
2 , + 3

2� =
1
�2

��X + iY�↑� , �1b�

�3� = � 3
2 ,− 1

2� =
1
�6

��X − iY�↑ + 2Z↓� , �1c�

�4� = � 1
2 ,− 1

2� =
i

�3
�− �X − iY�↑ + Z↓� , �1d�

which correspond to electron spin up, heavy hole spin up,
light hole spin down, and split off hole spin down. Likewise,
the Bloch basis states for the lower set are

�5� = � 1
2 ,− 1

2� = �S↓� , �2a�

�6� = � 3
2 ,− 3

2� =
i

�2
��X − iY�↓� , �2b�

�7� = � 3
2 , + 1

2� =
i

�6
��X + iY�↓− 2Z↑� , �2c�

�8� = � 1
2 , + 1

2� =
1
�3

��X + iY�↓ + Z↑� , �2d�

corresponding to electron spin down, heavy hole spin down,
light hole spin up, and split off hole spin up.

The effective-mass Hamiltonian in bulk zinc blende ma-
terials in the axial approximation is given explicitly by20

H0 = �Huu Hul

Hlu Hll
� �3�

where Huu, Hul, Hlu, and Hll are 4�4 submatrices. The
effective-mass Hamiltonian matrix elements between the up-
per set basis states in Eq. �1� are

Huu = 	
Eg + A i

�2

2
Vk+ i

�6

6
Vk−

�3

3
Vk−

− i
�2

2
Vk− − P − Q − M i�2M

− i
�6

6
Vk+ − M† − P + Q i�2Q

�3

3
Vk+ − i�2M† − i�2Q − � − P


 , �4a�

while the Hamiltonian matrix elements between the lower set
basis states in Eq. �2� are given by

FIG. 1. Schematic diagram of the heterostructure consisting of a
25 nm In0.91Mn0.09As quantum well and a 820 nm GaSb barrier
grown on a GaAs substrate. The band gap as a function of position
in each of the layers is also shown.
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Hll = 	
Eg + A −

�2

2
Vk− −

�6

6
Vk+ i

�3

3
Vk+

−
�2

2
Vk+ − P − Q − M† i�2M†

−
�6

6
Vk− − M − P + Q i�2Q

− i
�3

3
Vk− − i�2M − i�2Q − � − P


 .

�4b�

The submatrices coupling upper and lower set basis states
are

Hul = 	
0 0

�6

3
Vkz i

�3

3
Vkz

0 0 − L − i
�2

2
L

− i
�6

3
Vkz L 0 i

�6

2
L†

−
�3

3
Vkz − i

�2

2
L i

�6

2
L† 0


 , �4c�

and

Hlu = 	
0 0 i

�6

3
Vkz −

�3

3
Vkz

0 0 L† i
�2

2
L†

�6

3
Vkz − L† 0 − i

�6

2
L

− i
�3

3
Vkz i

�2

2
L† − i

�6

2
L 0


 . �4d�

In Eqs. �4� Eg is the bulk band gap, � is the spin orbit
splitting, and k±=kx± i ky. Following Jain et al.,21 band-gap
renormalization in InAs shrinks the InAs band gap by an
amount

�Eg = AN1/3 + BN1/4 + C�N , �5�

where N is the electron or hole carrier concentration and A,
B, and C are material parameters which are found to be
different for electrons and holes. The temperature depen-
dence of the band gap is taken into account using the empiri-
cal Varshni formula.22 The temperature and carrier dependent
band gap is given by

Eg�T,N� = Eg −
�vT2

T + �v
− �Eg, �6�

where �v and �v are Varshni parameters that are tabulated in
Ref. 23 for a variety of semiconductors. The Kane momen-
tum matrix element V= �−i� /m0��S�px�X� is related to the op-
tical matrix element Ep by23

V =� �2

m0

Ep

2
. �7�

The operators A, P, Q, L, and M are

A =
�2

m0

�4

2
�k�

2 + kz
2� , �8a�

P =
�2

m0

�1

2
�k�

2 + kz
2� , �8b�

Q =
�2

m0

�̄

2
�k�

2 − 2kz
2� , �8c�

L = − i
�2

m0

�3�̄�kx − iky�kz, �8d�

and

M =
�2

m0

�3

2
�̄�kx − iky�2, �8e�

where k�
2=kx

2+ky
2. In the axial approximation,24 we have �̄

= �2�2+3�3� /5 so that the energy bands depend only on the
magnitude of k�. Note that at kz=0, the effective mass
Hamiltonain in Eq. �3� is block diagonal since L=0 at kz
=0.

In Eq. �8�, the parameters �1 and �̄ are not the usual
Luttinger parameters since this is an eight-band model, but
instead are related to the usual Luttinger parameters �1

L and
�̄L by the relations25

�1 = �1
L −

Ep

3Eg
�9�

and

�̄ = �̄L −
Ep

6Eg
. �10�

This takes into account the additional coupling of the valence
bands to the conduction band not present in the six-band
Luttinger model for the valence bands.

The parameter �4 is related to the conduction-band effec-
tive mass me

* through the relation20

�4 =
1

me
* −

Ep

3

 2

Eg
+

1

Eg + �
� . �11�

The exchange interaction between the Mn2+d electrons
and the conduction s and valence p electrons is treated in the
virtual crystal and molecular field approximation. The result-
ing Mn exchange Hamiltonian is26

HMn = xN0�Sz��Da 0

0 − Da
� , �12�

where x is the Mn concentration, N0 is the number of cation
sites in the sample, and �Sz� is the average spin on a Mn site.
The 4�4 submatrix Da is
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Da = 	
1

2
� 0 0 0

0
1

2
� 0 0

0 0 −
1

6
� − i

�2

3
�

0 0 i
�2

3
�

1

2
�


 , �13�

where � and � are the s-d and p-d exchange integrals.
The average Mn spin �Sz� in the ferromagnetic

In1−xMnxAs quantum well is computed in the mean field ap-
proximation, i.e.,

�Sz� = − SBS
−
JS�Sz�

kT
� , �14�

where BS�x� is the Brillouin function, S= 5
2 for the 3d5 elec-

trons of the the Mn2+ ion,27 J=3kBTc /S�S+1� is the ferro-
magnetic coupling, and Tc is the experimentally measured
Curie temperature.

The effective mass Hamiltonian for In1−xMnxAs is

H = H0 + HMn. �15�

It is assumed in our calculations that the compensation arises
from As antisites and hence the effective Mn fraction x in
Eq. �12� is taken to be equal to the actual Mn fraction in the
sample. We note that this is supported by experimental evi-
dence showing that InAs grown at low temperature �200 °C�
is a homogeneous alloy and that the magnetization varies
linearly with Mn content, x.28–31

B. Confined states in the InxMn1−xAs quantum well

In quantum-confined systems such as the InxMn1−xAs
quantum well shown in Fig. 1, we must modify the bulk
Hamiltonian in Eq. �15�. The quantum well breaks transla-
tional symmetry along the z direction but not in the x-y
plane. Since the pump pulse is below the GaSb band gap, all
photogenerated electrons and holes are strongly confined to
the well and we assume the confinement potentials are infi-
nite. The wave functions in the envelope function approxi-
mation are

	n,k�
�r� =

eik�·


�A
�
�=1

8

Fn,�,k�
�z���� , �16�

where A is the cross sectional area of the sample, n is the
subband index, k� = �k cos � ,k sin � ,0� is the two-
dimensional wave vector and ���= �1� , . . . , �8� are the Bloch
basis states defined in Eqs. �1� and �2�. The complex valued
envelope functions Fn,�,k�

�z� are slowly varying in compari-
son with the Bloch basis states.

The envelope functions satisfy a set of effective-mass
Schrödinger equations which, in the axial approximation, are

�
��=1

8

H�,���k��Fn,��,k�
�z� = En�k�Fn,�,k�

�z� �17�

subject to the boundary condition that the envelope functions
vanish at the walls of the quantum well. The operators
H�,���k�� depend on the wave vector in the x-y plane and can
be obtained from the matrix elements in Eq. �15� by making
the operator replacement kz→−i� /�z in all the matrix ele-
ments of Eq. �3�.

In practice, we solve for the envelope functions for a
given value of k� on an evenly spaced mesh of points, zi, i
=1. . .N, in the quantum well. Approximating the derivative,
� /�z by a finite difference formula, the Schrödinger equation
�17� with the rigid wall boundary conditions becomes a ma-
trix eigenvalue problem which can be solved for the eigen-
values En�k�� and the complex envelope functions Fn,�,k�

�zi�
evaluated at the mesh points, zi.

C. Boltzmann transport equations

In the two-color time-resolved differential reflectivity ex-
periments the pump laser is used to promote electrons from
the valence to the conduction subbands of the quantum well.
The photoexcited carriers then relax through scattering,
changing the optical properties of the heterostructure in the
process. These processes are often simulated using Boltz-
mann transport equations.

In this paper, we formulate and solve the Boltzmann
transport equations using a numerical method similar to the
one described in Ref. 32. For each subband state with energy,
En�k�, we have a time-dependent distribution function
fn�k� , t� which gives the probability, as a function of time, of
finding an electron in subband n with wave vector k�. The
Boltzmann equation including photogeneration of hot
electron-hole pairs by the pump, the subsequent cooling of
these carriers by emission of confined LO phonons, and the
recombination of electron-hole pairs by means of carrier
trapping is

�fn�k��
�t

= �
n�,k��

�fn��k���Wk��,k�

n�,n �1 − fn�k���

− fn�k��Wk�,k��
n,n� �1 − fn��k����� + � �fn�k��

�t
� .

�18�

The scattering rate due to scattering by confined LO phonons

in the quantum well, Wk�,k��
n,n� , is the rate at which electrons in

subband n with wave vector k� scatter to subband n� with
wave vector k��. The last term on the right-hand side of Eq.
�18� describes the change in the electron distribution func-
tion due to the action of the pump as well as a recombination
of electron-hole pairs by means of carrier trapping. Thus
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� �fn�k��
�t

� = � �fn�k��
�t

�
P

+ � �fn�k��
�t

�
T
, �19�

where the first term on the right hand-side is the photoge-
neration rate and the second term is the recombination rate
due to carrier trapping.

To simplify the calculations, we use an axial approxima-
tion in which the distribution functions are replaced by their
angular averages in the x-y plane of the quantum well. The
axial distribution functions are

fn�k,t� = �
−



 d�

2

fn�k�,t� = �

−



 d�

2

fn�k,�,t� . �20�

Next, we divide k space into evenly spaced cells of width
�k=kmax /Nk, where Nk is the number of cells. The value of k
at the midpoint of each cell is denoted km �m=1. . .Nk�. In
each k cell we define the cell averaged distribution functions

fn�km,t� = �
m

dk k

�kkm
fn�k,t� , �21�

where the limits of integration are from km−�k /2 to km
+�k /2.

If we assume that the distribution functions in the
Boltzmann equation depend only on k and vary slowly
within each k cell, we can obtain a coupled set of ordinary
differential equations for the cell averaged axial distribution
functions;

�fn�km�
�t

=
A

2

�

n�,m�

�kkm� �fn��km� �Wm�,m
n�,n �1 − fn�km��

− fn�km�Wm,m�
n,n� �1 − fn��km� ��� + � �fn�km�

�t
� .

�22�

The confined LO phonon scattering rates in the original Bolt-
zmann equation �18� depend only on the angle � between k�

and k��, so the cell and axially averaged scattering rates ap-
pearing in Eq. �22� are given by

Wm,m�
n,n� = �

m

dk k

�kkm
�

m�

dk� k�

�kkm�
�

−



 d�

2

Wk�,k��

n,n� . �23�

Given initial values of the distribution function, fn�km , t
→−��, we can solve the system of coupled ordinary differ-
ential equations �22� with an adaptive Runge-Kutta routine.33

In order for the integration to be numerically stable, we need
the cell averaged scattering rates in Eq. �23� to satisfy the
detailed balance condition. We ensure this by calculating the
downward scattering rate and using the detailed balance con-

dition to obtain the upward scattering rate. If Wm,m�
n,n� is the

cell averaged downward scattering rate between a higher ly-
ing state En�km� and a lower lying state En��km��, then the

upward scattering rate, Wm�,m
n�m , between these two states is

Wm�,m
n�,n = exp�− 
En�km� − En��km��

kBT
��Wm,m�

n,n� . �24�

The electrons are initially in thermal equilibrium with the
lattice and are described by a Fermi-Dirac distribution

fn
0�km� =

1

1 + exp��En�km� − EF�/kBT�
. �25�

If n and p are the initial electron and hole column densi-
ties in the quantum well, then the Fermi energy as a function
of the lattice temperature and initial carrier concentrations
can be easily found by solving

n − p =
1

2

�
n,m

�kkm�fn
0�km� − �n,v� �26�

for EF using a root finding routine.33 In Eq. �26� the valence
delta function �n,v is defined as zero if subband n is a con-
duction subband and one if subband n is a valence subband.

To finish specifying the transport problem, we need to
supply the cell averaged axial scattering rates appearing in
Eq. �22� as well as the cell averaged photogeneration and
carrier trapping term.

D. Photogeneration rates

The photogeneration rate is computed using Fermi’s
golden rule. The pump is characterized by the fluence which
is the total flux integrated over time. Assuming a narrow
spectral width for the pump, centered on the pump energy
��, the fluence is given by

F0 = �
−�

�

U0�t�
c

nr
, �27�

where U0�t� is the pump energy density and nr is the refrac-
tive index in the InxMn1−xAs quantum well. For the pump
energy density, we assume a Gaussian pulse shape with an
intensity FWHM of �p so that

U0�t� = Ū0 exp�− 4 ln�2�
 t

�p
�2� . �28�

Assuming the Dirac delta function in Fermi’s golden rule
is the only rapidly varying quantity in a k cell, the cell aver-
aged photogeneration rate in Eq. �19� is given by

� �fn�km�
�t

�
P

=
4
2e2U0�t�
�nr

2����2 �
n�

�Pn,n��km��2

��fn��km� − fn�km���n,n�
m ���� . �29�

The cell averaged delta function, denoted �n,n�
m ���, is

�n,n�
m ��� = �

m

dk k

�kkm
����En��k� − En�k�� − �� , �30�

where ���x� is a Lorentzian line shape with FWHW, �.
The squared optical matrix element �Pn,n��k��2 between

subbands n and n� is the angular average
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�Pn,n��k��2 = �
−



 d�

2

�� · Pn,n��k,���2, �31�

where � is the unit complex polarization vector of the pump
pulse. The optical matrix element between subband states at
fixed k� is

Pn,n��k�� =
�

m0
�
�,��

���p���� � dz Fn,�,k�

* �z�Fn�,��,k�
�z� ,

�32�

where ���p���� is the momentum matrix element between the
Bloch basis states defined in Eqs. �1� and �2�. Explicit ex-
pressions for the matrix elements of P= �� /m0� p between
the Bloch basis states in terms of the Kane momentum ma-
trix element, V, defined in Eq. �7� can be found in Appendix
B of Ref. 5.

E. Recombination rates due to carrier trapping

Electron-hole pairs can recombine through the ultrafast
trapping of electrons �by AsGa, antisite defects� and holes �by
Ga vacancies� by the midgap states introduced by low tem-
perature molecular beam epitaxy growth.15 The cell averaged
carrier trapping rate in Eq. �19� is treated using a simple
relaxation time model of the form

� �fn�km�
�t

�
T

= − 
 fn�km,t� − fn
0�km�

��t�
� , �33�

where fn
0�km� are the initial thermal equilibrium distribution

functions defined in Eq. �25� and ��t� is the Shockley-Read
recombination time for electron-hole pairs.

If we assume electron-hole pairs recombine through trap-
ping at monovalent flaws in the midgap region, the
Shockley-Read recombination time can be expressed as34

��t� =
�n + p��0 + ne�t���

�n + p� + ne�t�
, �34�

where n and p are the initial electron and hole column den-
sities in the quantum well and ne�t� is the column density of
photogenerated electron-hole pairs. In our model, we assume
for simplicity that the flaws are acceptorlike with ����0 so
that ���0.

The electron-hole pair column density is equal to the col-
umn density of photogenerated electrons which is given by

ne�t� =
1

2

�
n,m

��kkm�fn�km,t� − fn
0�km�� , �35�

where the prime on the summation sign is a reminder that the
sum over subband index, n, is restricted to conduction sub-
bands. We note in passing that the number of photogenerated
electrons and holes remain equal in the Shockley-Read re-
combination model.

F. Confined LO phonon scattering rates

When the sample is excited by the ultrafast pump laser,
hot carriers are created above the fundamental gap. The hot

carriers relax back to the band edge and reach a quasithermal
equilibrium through carrier cooling. The dominant cooling
mechanism is absorption and emission of confined longitu-
dinal optical �LO� phonons in the quantum well. The Frölich
Hamiltonian for LO phonon scattering in a quantum well of
width L is given by32

HLO =
CLO

�LA
�
q,l

tl�q�eiq·
ul�z��aq,l
† + a−q,l� , �36�

where the electron LO phonon coupling constant is given by

CLO =�4
��LO
 1

��

−
1

�0
� . �37�

The LO phonon energy in the Einstein model is ��LO and �0
and �� are the static and high frequency dielectric constants
in the quantum well. The operator aq,l

† creates a confined LO
phonon in the quantum well in the lth LO phonon mode with
wave vector q. The vibrational amplitude of the lth LO pho-
non mode is ul�z� and

1

tl�q�2 =
2

L
�

0

L

dz�q2ul�z�2 + 
 �ul�z�
�z

�2� . �38�

The vibrational amplitude is model dependent. In the slab
mode model of Fuchs and Kleiwer35

ul�z� = sin
 l
z

L
� l = 1,2,3, . . . . �39�

Using Fermi’s golden rule, the confined LO phonon scat-
tering rate due to emission or absorption of a single confined
LO phonon is

Wk�,k��
n,n� =

2


�

CLO
2

LA �
l=1

�

tl��k� − k����2��k�,k��
n,n� �l��2

��N0���Ek,k�
n,n� + ��LO�

+ �N0 + 1����Ek,k�
n,n� − ��LO�� . �40�

The energy slitting �Ek,k�
n,n�=En�k�−En��k�� and the LO pho-

non occupation number N0 is given by the Bose-Einstein
distribution

N0 =
1

exp���LO/kBT� − 1
. �41�

The vibrational amplitude form factor is defined as

�k�,k��
n,n� �l� = �

�=1

8 � dz Fn,�,k�

* �z�ul�z�Fn�,�,k��
�z� . �42�

The cell averaged scattering rates, Wm,m�
n,n� used in the

Bolztmann equation �22� are obtained by substituting Eq.
�40� into Eq. �23� and performing the integrals.

G. Generation and propagation of coherent acoustic phonons

The ultrafast photogeneration of electrons and holes in the
InxMn1−xAs quantum well by the pump gives rise to coherent
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longitudinal acoustic �LA� phonons which propagate into the
sample.11–13,36,37 Coherent acoustic phonons, as opposed to
incoherent phonons, give rise to a macroscopic lattice dis-
placement. Since the photogenerated carrier distributions are
functions of z, the transient lattice displacement U�z , t� due
to photogenerated carriers is independent of x and y and is
parallel to z. As discussed in Refs. 36 and 11, the coherent
phonon lattice displacement satisfies a loaded string equa-
tion. In the presence of a position-dependent longitudinal
acoustic sound velocity Cs�z� we have

�2U�z,t�
�t2 −

�

�z

Cs�z�2�U�z,t�

�z
� = S�z,t� , �43�

where S�z , t� is the driving function. The longitudinal acous-
tic sound velocity is given by

Cs�z� =�C11�z�

0�z�

, �44�

where C11�z� and 
0�z� are the position dependent elastic
stiffness constant and mass density.

The loaded string equation is to be solved subject to the
initial conditions

U�z,t = − �� =
�U�z,t = − ��

�t
= 0. �45�

We solve the loaded string equation numerically by finite
differencing Eq. �43� inside a computational box whose left
edge zL is the semiconductor-air interface and whose right
edge zR lies inside the GaAs substrate �see Fig. 1�. At zR we
impose absorbing boundary conditions and at zL there are no
perpendicular forces at the semiconductor-air interface. Thus
we solve the initial value problem subject to the left and right
boundary conditions

�U�zL,t�
�z

= 0 �46a�

and

�U�zR,t�
�z

+
1

Cs�zR�
�U�zR,t�

�t
= 0. �46b�

Starting with the second quantized Hamiltonian for the
electron-phonon interaction, a microscopic expression for the
driving function was derived in Ref. 36 using the density
matrix formalism �see also the erratum in Ref. 37 as well as
the review article in Ref. 11�. In zinc-blende materials such
as InAs the electron-phonon interaction is due to deforma-
tion potential coupling. Under typical experimental condi-
tions the microscopic expression for the driving function can
be simplified to36

S�z,t� =
1


0

ac

�
e�z,t�
�z

− av
�
h�z,t�

�z
� , �47�

where 
0 is the mass density, ac and av are the deformation
potentials for conduction and valence bands, and 
e�z , t� and

h�z , t� are the photogenerated electron and hole carrier den-
sities. We note that this last equation was derived indepen-
dently in the elastic continuum limit by Chigarev et al.38 and

Chern et al.11 The driving function satisfies the sum rule

�
−�

�

dz S�z,t� = 0. �48�

as shown in Refs. 36 and 11.
The photogenerated electron and hole densities can be

obtained from the envelope and distribution functions de-
scribed in the previous sections as


e�z,t� =
1

A
�

n,�,k�

�fn�k,t� − fn
0�k���Fn,�,k�

�z��2�n,c �49a�

and


h�z,t� =
1

A
�

n,�,k�

�fn
0�k� − fn�k,t���Fn,�,k�

�z��2�n,v. �49b�

The initial Fermi-Dirac distribution functions fn
0�k� are de-

fined in Eq. �25� and �n,c and �n,v are conduction and valence
delta functions that select out conduction and valence sub-
bands, respectively.

The propagating coherent phonon displacement field
U�z , t� gives rise to a propagating strain tensor with compo-
nents

�zz�z,t� =
�U�z,t�

�z
�50a�

and

�xx�z,t� = �yy�z,t� = −
C12�z�

C11�z� + C12�z�
�zz�z,t� , �50b�

where C11�z� and C12�z� are elastic stiffness constants. This
propagating strain field alters the optical properties of the
sample which can be detected by the probe.

H. Transient probe response

To compute the time-dependent probe transmission and
reflection coefficients we need to model the dielectric func-
tion in the entire structure, i.e., the InxMn1−xAs well, GaSb
barrier, and GaAs substrate, over the probe energy range
which extends up to 2 eV. We will denote this dielectric
function as

����,z,t� = �1���,z,t� + i�2���,z,t� , �51�

where �� is the probe energy. Once the dielectric function is
found, we can solve Maxwell’s equations for the time-
dependent probe reflection coefficient, R��� , t�, and the
transmission coefficient T��� , t� using the transfer matrix
method described in detail in Ref. 39.

There are several processes which contribute to the di-
electric function in the InxMn1−xAs quantum well. The first
of these is a Drude term due to free carriers in the quantum
well, which gives a real contribution to the dielectric func-
tion of
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�1���,z,t�D = −
���p�t��2

����2 , �52�

where �p is the plasma frequency. The Drude contribution to
the dielectric function in Eq. �52� is uniform in the quantum
well and vanishes everywhere else. In the random phase ap-
proximation, the time-dependent plasma frequency is given
by40

�p
2�t� =

4
e2

L

1

A �
n,k�

fn�k,t� − �n,v

mn
*�k�

, �53�

where L is the quantum well width and A is the cross sec-
tional area of the sample. The effective mass is

1

mn
*�k�

=
1

�2

�2En�k�
�k2 . �54�

A second contribution to the dielectric function in the
quantum well is due to dipole transitions between quantum
confined carrier states. Using Fermi’s golden rule, we
obtain39,41

�1���,z,t�QW =
8
e2

L

1

A �
n,n�,k�

�Pn,n��k���2

�
fn��k,t� − fn�k,t�

�En,n��k���En,n��k� + �����En,n��k� − ���

�55a�

and

�2���,z,t�QW =
4
2e2

L����2

1

A
�

n,n�,k�

�Pn,n��k���2

��fn��k,t� − fn�k,t���„�En,n��k� − ��… ,

�55b�

where �En,n��k�=En�k�−En��k� are the transition energies,
including band-gap renormalization corrections due to pho-
togenerated carriers and Pn,n��k�� are the optical matrix ele-
ments. The contributions to the dielectric function in Eq. �55�
are for zero linewidth. For a finite FWHM linewidth �, we
make the replacements39

1

�En,n��k� − ��
→

�En,n��k� − ��

��En,n��k� − ���2 + ��/2�2 �56�

and

��x� →
1




��/2�
x2 + ��/2�2 . �57�

There is also a background dielectric function �b in the
quantum well due to all the higher lying electronic transi-
tions whose real and imaginary parts we shall denote �1b and
�2b. For simplicity, we treat these contributions to the dielec-
tric function using Adachi’s model dielectric function for
bulk InAs with contributions from the E0 and E0+�0 critical
points removed.42,43 These correspond to contributions from
the confined quantum well electronic states and are already

included in Eq. �55�. The background dielectric function in
InAs as a function of photon energy is shown in Fig. 2 at
T=0 K and in the absence of strain.

Following Thomsen and co-workers44,45 we assume that
the dielectric function changes with strain only because of
strain-induced variations in the energy gaps associated with
each transition. The propagating coherent phonon strain ten-
sor alters the optical properties of the structure through the
deformation potential interaction. In our experiments, the
probe photon energy can go as high as the GaSb E1 transition
region. Ab initio density functional calculations of the defor-
mation potentials for the E1 transitions in a number of
semiconductors46 have shown that the deformation potentials
associated with the E0 and E1 features are equal to within
20%. So, to a first approximation, the effect of temperature
and strain on �b is to introduce a rigid shift in the dielectric
function such that

�b���,z,t� = �b��� − �Eg�T� − acv��xx + �yy + �zz�� .

�58�

Here, acv=ac−av is the interband deformation potential, �xx,
�yy, and �zz are the coherent phonon strain tensor compo-
nents defined in Eq. �50�, and �Eg�T�=Eg�T�−Eg is the
band-gap shift due to temperature variations with Eg�T� be-
ing the temperature-dependent band-gap defined by the
Varshni expression in Eq. �6�.

The total dielectric function in the quantum well is ob-
tained by adding the Drude, quantum well, and background
contributions in Eqs. �52�, �55�, and �58�, i.e.,

����,z,t� = ����,z,t�D + ����,z,t�QW + �b���,z,t� .

�59�

We use Adachi-type model dielectric functions for the
GaSb barrier47,48 and the GaAs substrate.49 Figure 3 shows
the real and imaginary parts of the model dielectric function
for bulk GaSb and GaAs at T=0 K in the absence of strain.
Temperature and strain effects in the GaSb barrier and GaAs
substrate are included using the same rigid shift model as
defined in Eq. �58�. Note that the dielectric functions in
GaSb and GaAs are modulated by the coherent phonon strain
field as it propagates through the structure.

FIG. 2. �Color online� Background model dielectric function at
T=0 K as a function of photon energy used in computing the di-
electric function in the InxMn1−xAs quantum well.
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IV. RESULTS AND DISCUSSION

A. Quantum well electronic states

The 25 nm thick ferromagnetic In0.91Mn0.09As quantum
well is shown schematically in Fig. 1. The quantum well is p
type with a free hole density estimated to be p�1019 cm−3

and a Curie temperature of Tc=55 K. The computed band
structure of the 25 nm ferromagnetic In0.91Mn0.09As quantum
well in the axial approximation, assuming infinite barriers, is
shown in Fig. 4 as a function of k� for temperatures above
and below the Curie temperature. The Fermi energies Ef cor-
responding to a free hole density of p=1019 cm−3 are indi-

cated by short horizontal lines in Fig. 4. The band structure
well above the Curie temperature �T=300 K� is shown in
Fig. 4�a�. Far above the Curie temperature, the average Mn
spin �Sz� vanishes, the sample is nonmagnetic, and the com-
puted subbands are doubly degenerate. Below the Curie tem-
perature, the quantum well becomes ferromagnetic with a
nonvanishing �Sz� and the doubly degenerate subbands in
Fig. 4�a� become spin-split as can be seen in Fig. 4�b�.

B. Coherent phonon generation and propagation

The coherent phonon lattice displacement, U�z , t�, ob-
tained from the loaded string equation �43� gives rise to
strain tensor components �xx�z , t�, �yy�z , t�, and �zz�z , t� as
defined in Eq. �50�. The coherent phonon strain tensor com-
ponent �zz�z , t� is shown in Fig. 5 as a function of position in
the sample for several equally spaced delay times ranging
from 0 to 140 ps.

Following photogeneration of carriers by the pump, a lo-
calized strain appears in the quantum well as can be seen in
Fig. 5. This is due to near steady-state loading by the driving
function at long times. Assuming the driving function S�z , t�
is approximately time independent at long times, the loaded
string equation �43� can be integrated once in the steady-state
limit. The resulting steady-state strain is

�zz�z� =
�U�z�

�z
= − �

−�

z

dz�
S�z��
Cs

2 , �60�

where Cs is the longitudinal acoustic sound speed in the
InxMn1−xAs quantum well and S�z�� is the approximately
time-independent driving function left behind in the quantum
well at long times. The fact that the steady-state strain is
localized in the well follows directly from the sum rule �48�.

In addition to the localized strain, a transient strain pulse
propagates into the GaSb barrier at the longitudinal acoustic
sound speed. Two transient strain pulses are generated in the
well, one propagating to the left and the other to the right.
The leftward propagating pulse is totally reflected off the
semiconductor-air interface and trails the rightward propa-
gating pulse as it propagates into the GaSb barrier.

FIG. 3. �Color online� Model dielectric functions at T=0 K as a
function of photon energy for �a� GaSb and �b� GaAs used in cal-
culating the dielectric functions in the GaSb barrier and GaAs
substrate.

FIG. 4. �Color online� Band structure of a 25 nm ferromagnetic
In1−xMnxAs quantum well with infinite barriers and x=9% at �a�
T=300 K and �b� T=20 K. The Curie temperature is taken to be
Tc=55 K. The Fermi energies Ef for a hole density of p
=1019 cm−3 are indicated by the horizontal lines.

FIG. 5. Coherent phonon strain field as a function of position for
delay times ranging from 0 to 140 ps. The curves have been offset
for clarity.
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C. Differential reflectivity

The oscillation observed in the differential reflectivity can
be attributed to propagation of the strain pulse through the
structure. During most of the experiment, the traveling strain
pulse is in the GaSb barrier shown schematically in Fig. 1.

The propagating strain tensor shown in Fig. 5 alters the
dielectric function in the structure. The change in the com-
plex dielectric function due to coherent phonon wave packets
is given by

�����,z,t� =
d����,z�

d�zz
�zz�z,t� , �61�

where the total derivative with respect to strain,
d���� ,z� /d�zz, is piecewise constant in z having different
values in the InxMn1−xAs well, the GaSb barrier, and the
GaAs substrate.

The total derivative with respect to strain in Eq. �61� is
obtained from the Adachi-type model dielectric functions by
differentiating Eq. �58� with respect to �zz taking care to
eliminate �xx and �yy in favor of �zz using Eq. �50�. In the
case of GaSb, the real and imaginary parts of d� /d�zz are
plotted as a function of the probe photon energy in Fig. 6. As
seen in Fig. 6 the perturbation in the dielectric function per
unit strain, i.e., the dielectric function strain sensitivity, is a
function of the probe energy. In particular, there is a giant
peak in the dielectric function strain sensitivity at the GaSb
E1 transition near 2.0 eV. Consequently, the best probe
wavelength for observing coherent phonon differential re-
flectivity oscillations is in the region around the E1 transition.

The differential reflectivity at a given probe delay time is
obtained from the dielectric function by solving Maxwell’s
equations in the entire structure using the transfer matrix
formalism as described earlier. If we use the complete time-
and space-dependent dielectric function defined in Eq. �59�
including the quantum well, Drude, and background contri-
butions, we can compute the total differential reflectivity
containing the coherent phonon oscillation and transient car-
rier relaxation effects.

Our theoretical results are compared with the experiment
in Fig. 7 where we plot the experimental and theoretical
differential reflectivity spectra for probe wavelengths of 650

and 775 nm. In both cases there is an initial sharp drop in the
differential reflectivity which we attribute to free carrier
Drude absorption by the hot carriers created by the pump.

The photogenerated hot carriers relax back to quasiequi-
librium distributions at their respective band edges through
emission of confined LO phonons. The relaxation of photo-
generated carriers by LO phonons alters the quantum well
dielectric function in Eq. �55� through changes in the time-
dependent distribution functions. This carrier cooling by LO
phonon emission results in the subsequent rise in the differ-
ential reflectivity traces seen in Fig. 7.

In addition to carrier cooling by LO phonon emission,
electron-hole pairs recombine through trapping at midgap
defects with �0�200 ps. This gives rise to the slow decay in
the differential reflectivity at long times seen in Fig. 7. At
short times, electron-hole pair recombination is enhanced
since the Shockley-Read recombination time ��t� is a mono-
tonically decreasing function of the photogenerated electron-
hole pair density.

For delay times of less than 20 ps, our theory does not
agree very well with the experiment. For delay times greater
than 20 ps, however, the theory reproduces the experimental
results surprisingly well. In particular, the period and ampli-
tude of the reflectivity oscillations in relation to the height of
the plateau as well as the decay of the reflectivity oscillations
with delay time are in good agreement with experiment.

The oscillations in differential reflectivity seen in Fig. 7
are due to changes in the background dielectric function in-
duced by the propagating coherent strain pulse seen in Fig. 5.
If we compute the probe differential reflectivity neglecting
the quantum well and Drude contributions to the total dielec-
tric function in Eq. �59� and retain only the background con-
tribution, we get the coherent acoustic phonon differential

FIG. 6. �Color online� Derivative of the complex GaSb dielec-
tric function with respect to strain as a function of the probe photon
energy. The solid line is the real part and the dashed line is the
imaginary part.

FIG. 7. �Color online� Theoretical and experimental differential
reflectivity for probe wavelengths of �a� 650 and �b� 775 nm due to
variations in the time- and space-dependent dielectric functions.

SANDERS et al. PHYSICAL REVIEW B 72, 245302 �2005�

245302-10



reflectivity oscillation absent the transient relaxation signal.
In Fig. 8 the computed coherent phonon differential re-

flectivity oscillations are shown as a function of time delay
for probe wavelengths of 650, 775, and 850 nm, correspond-
ing to photon energies of 1.9, 1.6, and 1.46 eV, respectively.
The theoretical differential reflectivity curves in Fig. 8�b�
agree well with the experimentally measured differential re-
flectivity seen in Fig. 8�a� after subtraction of the transient
background signal. As we go from 650 to 850 nm, the dif-
ferential reflectivity oscillation period becomes longer.

The reflectivity oscillations can be qualitatively under-
stood as follows. The propagating strain pulse in Fig. 5 gives
rise to a perturbation in the GaSb dielectric function which
propagates at the acoustic sound speed. The sample thus acts
as a Fabry-Perot interferometer and a simple geometrical op-
tics argument shows that the period for the reflectivity oscil-
lations due to the propagating coherent acoustic phonon
wave packet is approximately12

T =
�

2Csn���
, �62�

where �=2
c /� is the probe wavelength, Cs is the LA
sound speed in the GaSb barrier, and n��� is the wavelength-
dependent refractive index. The refractive index can be ob-
tained from the GaSb model dielectric function in Fig. 3�a�
as50

n��� = �1
2 ��1��� + ��1���2 + �2���2� . �63�

In Fig. 9 we have plotted experimentally measured coherent
phonon differential reflectivity oscillation periods as a func-
tion of probe wavelength as solid circles. The solid line
shows the oscillation period vs probe wavelength estimated
using Eq. �62�. The excellent agreement between theory and
experiment is compelling evidence that the reflectivity oscil-
lations seen in the experiments are induced by propagating
coherent acoustic phonons in the GaSb barrier.

In going from a probe wavelength of 650 to 850 nm in
Fig. 8, we note that the initial amplitude of the differential
reflectivity oscillation decreases with increasing probe wave-
length. At the same time these oscillations become more
weakly damped. The reason for the reduction in amplitude of

the oscillations can be found in Fig. 10 where we plot
d� /d�zz as a function of probe wavelength. As the probe
wavelength increases �and the photon energy decreases�, the
strength of the perturbation of the dielectric function due to
the propagating coherent phonon strain defined in Eq. �61�
decreases. This accounts for the observed reduction in the
initial amplitude of the differential reflectivity oscillations as
we go to higher wavelengths. The increased damping of the
differential reflectivity oscillations with decreasing probe
wavelength is simply due to the fact that the absorption co-
efficient in GaSb is rapidly decreasing with wavelength in
this wavelength range as can be inferred from the imaginary
part of the GaSb dielectric function plotted in Fig. 3�a�.

V. CONCLUSIONS

In summary, we have performed calculations and modeled
time-dependent two-color differential reflectivity experi-

FIG. 8. Experimental �a� and theoretical �b� coherent phonon
differential reflectivity oscillations for probe wavelengths of 650,
775, and 850 nm.

FIG. 9. �Color online� Coherent phonon differential reflectivity
oscillation period vs probe wavelength. The experimental data are
shown as solid circles, the dashed line shows the oscillation period
calculated from the theory described in the text, and the solid line
shows the oscillation period estimated from Eq. �62�.

FIG. 10. �Color online� Derivative of the complex GaSb dielec-
tric function with respect to strain as a function of the probe wave-
length in the experimentally relevant wavelength range. The solid
line is the real part and the dashed line is the imaginary part.

THEORY OF CARRIER DYNAMICS AND TIME… PHYSICAL REVIEW B 72, 245302 �2005�

245302-11



ments on a ferromagnetic InxMn1−xAs/GaSb heterostructure.
We have observed large amplitude reflectivity oscillations
resulting from the generation of coherent acoustic phonon
wave packets in the InxMn1−xAs quantum well and their sub-
sequent propagation into the GaSb layer. The propagation of
these coherent, localized strain pulses into the GaSb buffer
results in a position- and frequency-dependent dielectric
function.

To take into account the time-dependent background dif-
ferential reflectivity, we modeled the two color pump-probe
reflectivity experiments in a Boltzmann equation formalism.
Electronic structure was calculated using k� · p� theory in a
confined InxMn1−xAs layer. We included �1� photogeneration
of hot carriers in the InxMn1−xAs quantum well by a pump
laser and �2� their subsequent cooling by emission of con-
fined LO phonons. Recombination of electron-hole pairs via
the Schockley-Read carrier trapping mechanism was also in-
cluded in a simple relaxation time approximation.

Our results agree remarkably well with the experimental
coherent phonon oscillations and reasonably well with the
time-dependent background signal and capture the major
qualitative trends of the data. We identify three key effects
which contribute to the backgrounds signal: �1� the enhanced
Drude absorption resulting from the increase in carriers from
the laser photoexcitation �negative �R /R�, �2� the relaxation
dynamics associated with the decay of the highly nonequi-
librium photoexcited carrier distribution �positive �R /R�,
and �3� the trapping and the nonradiative recombination of
the photoexcited carriers resulting from the high density of
defects in the InxMn1−xAs layer �positive �R /R�.
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