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a b s t r a c t

We review recent studies of coherent phonons (CPs) corresponding to the radial breathing mode (RBM)
and G-mode in single-wall carbon nanotubes (SWCNTs) and graphene. Because of the bandgap-diameter
relationship, RBM-CPs cause bandgap oscillations in SWCNTs, modulating interband transitions at tera-
hertz frequencies. Interband resonances enhance CP signals, allowing for chirality determination. Using
pulse shaping, one can selectively excite specific-chirality SWCNTs within an ensemble. G-mode CPs
exhibit temperature-dependent dephasing via interaction with RBM phonons. Our microscopic theory
derives a driven oscillator equation with a density-dependent driving term, which correctly predicts
CP trends within and between (2n + m) families. We also find that the diameter can initially increase
or decrease. Finally, we theoretically study the radial breathing like mode in graphene nanoribbons.
For excitation near the absorption edge, the driving term is much larger for zigzag nanoribbons. We also
explain how the armchair nanoribbon width changes in response to laser excitation.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The physical, chemical, and optical properties of crystalline sol-
ids are determined by the atomic-level interplay between light and
the electrical and vibrational forces that tightly bind each atom in-
side the crystal lattice [1]. Thus, a microscopic understanding of
the dynamics and interactions of electrons, phonons, and photons
is needed to correctly interpret macroscopic material properties
and predict new phenomena. Recent progress in the fabrication
of nanomaterials has been impressive and holds promise for future
optoelectronic device applications [2]. In order to assess their opti-
mum capabilities, it is necessary to probe their microscopic prop-
erties under non-equilibrium conditions with ultrashort time
resolution. With ultrafast laser spectroscopy, one can probe elec-
tronic and vibrational dynamics in real time. Numerous time-
resolved detection techniques have been developed over the past
few decades, and ultrafast phenomena can now be studied with
a time resolution shorter than 1 fs, which is shorter than one
optical phonon period in most solids [3].

This article focuses on ultrafast optical phenomena in two
carbon-based nanostructures with extraordinary properties:
ll rights reserved.

l and Computer Engineering,
single-wall carbon nanotubes (SWCNTs) [4,5] and graphene
[6–8]. With uniquely simple but unusual band structures, SWCNTs
and graphene provide low-dimensional prototypes for studying
the dynamics and interactions of electrons and phonons in one-
and two-dimensions (1D and 2D), respectively. Recent continuous
wave (CW) optical studies of SWCNTs and graphene have produced
a world of intriguing phenomena, including strong Coulomb inter-
actions enhanced by the low-dimensionality as well as interaction
between excited electronic/excitonic states and phonons [9].

We have reported time-dependent observations of the lattice
vibrations in these low-dimensional carbon structures [10–15].
Using femtosecond pump–probe spectroscopy, we observed coher-
ent phonons (CPs) corresponding to the low-frequency RBM and
the high-frequency G-mode. The observed phonon frequencies ex-
actly correspond to those seen in traditional Raman spectroscopy
in the same sample, but with narrower phonon linewidths, no pho-
toluminescence signal or Rayleigh scattering background to ob-
scure features, and high resolution allowing normally blended
peaks to appear as distinct features. We found that CP signals are
resonantly enhanced when the pump pulse resonantly excites
excitons, allowing us to obtain precise information on chiralities
present in a given SWCNT sample [13]. Furthermore, because the
bandgap and diameter in SWCNTs are inversely proportional to
each other, the bandgap coherently oscillates as the lattice
undergoes coherent RBM oscillations [10]. This is a novel way of
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modulating interband optical absorption at terahertz (THz) fre-
quencies and opens intriguing possibilities for novel THz devices.
In addition, using tailored trains of femtosecond pulses, we selec-
tively excited RBM CPs of specific-chirality SWCNTs within an
ensemble sample [11]. For G-mode CPs in SWCNTs, we observed
thermally activated dephasing with an activation energy that coin-
cides with the RBM energy [16]. This suggests that the high-energy
G-mode (i.e., optical phonons) can dephase via interaction with the
RBM similar to the decay of the zone-center optic phonon into two
zone edge acoustic phonons in GaAs [98]. The dephasing time of
the G-mode in graphene was found to be shorter than in semicon-
ducting SWNCTs but longer than in metallic SWCNTs. In both
SWCNTs and graphene, strong polarization dependence was ob-
served in CP generation and detection [12,14].

We have also developed a microscopic theory explaining our
observations [17–20]. We find that the CP amplitudes satisfy a dri-
ven oscillator equation with a driving term depending on the
photoexcited carrier density. We find that the RBM CP amplitude
is a strong function of the photon excitation energy and polariza-
tion. In particular, we accurately predict the relative strengths of
the CP signal for different chirality nanotubes [17,19]. Further-
more, we predict that the nanotube diameter can initially either in-
crease or decrease in response to femtosecond laser excitation.
Finally, we developed a microscopic theory for CP generation and
detection in armchair and zigzag graphene nanoribbons [20]. We
examined the CP radial breathing like mode (RBLM) amplitudes
as a function of excitation energy and nanoribbon type. For photo-
excitation near the optical absorption edge, the CP driving term for
the RBLM is much larger for zigzag nanoribbons where strong tran-
sitions between localized edge states provide the dominant contri-
bution to the CP driving term. Using an effective mass theory, we
explain how the armchair nanoribbon width changes in response
to laser excitation.

This paper is organized as follows. In Section 2, we review the
fundamental concepts of coherent phonon spectroscopy and give
an overview of the basic optical and vibrational properties of car-
bon nanotubes and graphene. In Section 3, detailed descriptions
are given of the experimental techniques used in our investiga-
tions. Section 4 presents experimental results, while Section 5
showcases some of the new predictions that have come out of
our theoretical studies. Finally, we will summarize our findings
and conclusions and provide an outlook for future studies and pos-
sible uses of coherent phonons.
2. Basic concepts

In this section, we provide an introduction to the theory of
coherent phonon spectroscopy in semiconductor nanostructures
including single-wall carbon nanotubes and graphene nanostruc-
tures. We also discuss the optical properties and Raman modes
in graphitic materials.
2.1. Coherent phonon spectroscopy

Ultrafast femtosecond pump–probe spectroscopy is a useful
tool for studying non-equilibrium carrier dynamics in a variety of
semiconductor nanostructures since scattering times in these sys-
tems are in the 10–100 fs range. The decay of the reflection or
transmission of the probe pulse as a function of delay time from
the pump pulse provides information concerning details of the
non-equilibrium carrier dynamics. Information obtained from
these experiments includes: (i) scattering rates, (ii) electronic
structure, and (iii) many-body effects.

In addition to carrier dynamic effects, ultrafast pump–probe
experiments have been shown to produce oscillating signals
superimposed on the background carrier dynamics signal. These
oscillations typically match one of the vibrational frequencies of
the nanostructure and are known as coherent phonons (CPs) and
the study of these oscillations is the field of CP spectroscopy [21–23].
Coherent optical phonons can be generated by the absorption of
an ultrashort laser pulse whose duration is shorter than the period
of the lattice vibration [24]. They are usually observed as periodic
oscillations in the time-resolved differential reflectivity [25–30] or
differential transmission. The oscillation frequency in transmission
or reflection matches one of the phonon modes, which indicates
that the phonon mode becomes coherently excited by the pulse.

Time-resolved CP spectroscopy is a powerful tool for investigat-
ing vibrational dynamics and allows direct measurement of the ex-
cited state phonon dynamics in the time domain, including phase
information and dephasing times. To visualize the vibrational mo-
tion in a medium, light pulses with duration much shorter than the
vibrational period are required.

2.1.1. Coherent phonons
When an ultrafast optical laser pulse rapidly creates electron–

hole pairs across the bandgap in a semiconductor, the hot electrons
and holes relax and lose energy primarily through the emission of
optical and acoustic phonons. The phonons emitted, however, are
incoherent phonons and not related to the oscillations observed
in the differential transmission, and reflectivity spectra, although
they can be responsible for the decay of the background signal
(see Fig. 1(a)). Coherent phonons are not states with a definite
number of phonons but are formed from a coherent superposition
of phonon harmonic oscillator eigenstates (i.e., the states with def-
inite phonon number). If a large number of phonon harmonic oscil-
lator eigenstates can be excited, then an example of a coherent
phonon state is given by the well known superposition

Wcoh ¼ jzi ¼
X

n

jzjnffiffiffiffiffi
n!
p e�jzj

2=2jni: ð2:1Þ

These states in Eq. (2.1) are essentially the same as those used in
quantum optics to describe the quasi-classical photon states of
the electromagnetic field.

The states in Eq. (2.1) are eigenfunctions of the phonon annihi-
lation operator bq for phonons with wave vector q,

bqjzi ¼ zjzi; ð2:2Þ

and represent minimum-uncertainty Gaussian wavepackets that
oscillate back and forth in the parabolic potential without broaden-
ing, as shown in Fig. 1(b).

2.1.2. Coherent phonon generation mechanisms
The excitation of the CP displacement amplitude Q can be de-

scribed phenomenologically as a harmonic oscillator driven by an
external force, which depends on the electron and hole densities.
When the femtosecond laser pump pulse rapidly creates electrons
and holes across the gap, the force changes and triggers the coher-
ent oscillations.

A phenomenological model for the CP amplitude Q, first intro-
duced in Ref. [25], can be written as

l� @2QðtÞ
@t2 þ 2c

@QðtÞ
@t
þX2QðtÞ

 !
¼ SQ ðne;nh; tÞ; ð2:3Þ

where l⁄ is a reduced lattice mass, c is a damping constant, X is the
vibrational frequency, and SQ(ne,nh,t) is a driving force that depends
on time through the electron and hole densities ne and nh that
change rapidly with the laser pump pulse. The second term in Eq.
(2.3) is a damping term, and the damping constant c is related to
the dephasing time T2 of the coherent mode via c = 1/T2. The notion
of a dephasing time has been established for coherent excitations;
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Fig. 1. (a) Femtosecond laser excitation generates electron–hole pairs across the gap which relax and lose energy through phonon emission. These phonons are incoherent
phonons and do not lead to oscillations in the differential reflectivity or transmission. (b) Coherent phonon wavepackets are formed from the superposition of two or more of
the eigenstates of the harmonic potential. The harmonic oscillator displacement coordinate is u and for states given by Eq. (2.1), they oscillate back and forth in the harmonic
potential without broadening.
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in a density matrix representation, T2 describes the temporal evolu-
tion of the non-diagonal terms of the density matrix. This dephasing
time T2 is related to the population decay time T1, which describes
the decay of the diagonal terms of the density matrix, via 2/T2 = 1/
T1 + 1/Tp, where Tp is the decay time for truly phase-destroying pro-
cesses [31–37]. Eq. (2.3) can be solved exactly in two limiting cases:
(a) an impulsive force

SðtÞ ¼ IdðtÞ; ð2:4Þ

where I ¼
R

SðtÞdt is the total impulse delivered to the oscillator,
and (b) a displacive force

SðtÞ ¼ S
l�

hðtÞ; ð2:5Þ

where h(t) is the Heaviside step function. The generation of the
coherent phonons (as we will show below) depends on the rapid
photoexcitation of electrons and holes by a pump laser pulse. If
the pump laser energy is resonant with the energy levels of the sys-
tem, then ‘‘real’’ carriers i.e. electrons and holes are generated dur-
ing the pump pulse. In this case, the carrier density is proportional
to the integral of the pump pulse envelope which is approximately
given by a Heaviside step function for a rapid pump pulse. If the
pump pulse is not resonant with the electronic levels, quantum
mechanics still allows for the creation of electron and holes for a
short period of time consistent with the time-energy uncertainty
principle. These so called ‘‘virtual’’ carriers adiabatically follow the
pump pulse envelope and disappear after the pump pulse is gone.
For a short pulse, this is approximately a Dirac delta function and
corresponds to impulsive excitation.

The solution for an impulsive force is given by:

QðtÞ ¼ 1

l�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � c2

q e�ct sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � c2�

q
t

� �
: ð2:6Þ

An impulsive force would be similar to ringing a bell, where the
driving force is applied for only a short time. An impulsive force re-
sults if the femtosecond pump pulse is not resonant with the con-
duction and valence band states as is the case in below bandgap
excitation. Because of the uncertainty principle, virtual carriers are
created and the density of these carriers will adiabatically follow
the pulse envelope.

The solution for a discplacive force is given by:
QðtÞ ¼ S

l�X2 1� e�ct cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � c2

q sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � c2

q
� t

� �0B@
264

þ cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � c2

q
� t

� ���
: ð2:7Þ

A displacive force is analogous to putting weights on a spring sus-
pended from the ceiling. The weights cause the spring to stretch
to a new equilibrium position and if the weights were applied fast
enough, the spring will oscillate around the new equilibrium posi-
tion. Displacive forces typically arise when the femtosecond pump
pulse has resonant transitions creating real carriers in the semicon-
ductor as is the case for excitation above the bandap. In this case,
the driving force would be proportional to the integral in time of
the pulse envelope, which is approximately given by a step
function.

Results for impulsive and displacive excitation are shown in
Fig. 2(a) and (b), respectively. Note that the displacive transition
moves to a new equilibrium position and that there is about a 1/
4 period phase lag. Due to the broad spectral width for ultrafast
pump excitation, there are Fourier component for excitation both
above and below the bandgap and both real and virtual carriers
will in general be created leading to impulsive and displacive con-
tributions to the generation process. The impulsive contribution, as
discussed below in the section on impulsive transiently stimulated
Raman processes will usually have a strong angular dependence on
the polarization of the pump pulse.

2.1.3. Microscopic origin of the oscillator model
The key to understanding the microscopic origin of the driven

oscillator model for coherent phonon generation is to realize that
the coherent phonon amplitude is proportional to the expectation
value

QðtÞ � bq þ by�q

D E
; ð2:8Þ

where bþ�q

D E
and hbqi are the expectation values of the phonon cre-

ation and annihilation operators for phonon wave vector –q and q,
respectively. Note that the coherent amplitude is proportional to
the Fourier component of the displacement and that the expecta-
tion values do not vanish for the coherent states given by Eq.
(2.1). In a state with a definite number of phonons (i.e., eigenstates
of the harmonic oscillator), however, the expectation value is



Fig. 2. Solution for (a) an impulsive (Eq. (2.6)) and (b) displacive driving force (Eq. (2.7)). The damping is given by c ¼ 0:1X and X ¼ 6:25. Adapted from Ref. [23].
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identically zero. In a coherent state, given by Eq. (2.1), the coherent
amplitude can be non-zero.

To obtain the equations of motion for bþ�q

D E
and hbqi, one uses

the Heisenberg equations for the expectation values of operators
by commuting with the Hamiltonian:bH ¼X

k
ekcykck|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

electron

þ
X

q
�hXqbyqbq|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

phonon

þ
X

k;q
Mk;q by�q þ bq

� �
cykckþq|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

electron�phonon

; ð2:9Þ

where the first term is the electron part of the Hamiltonian, the
second term is the phonon Hamiltonian, and the third term is the
electron–phonon interaction Hamiltonian where Mk,q is the elec-
tron–phonon matrix element for electron wave vector k and pho-
non wave vector q.

After some algebra, one obtains the equation of motion for the
coherent amplitude given in Eq. (2.8):

@2

@t2 Qq þX2
qQ q ¼ �2Xq

X
k

Mkqnk;kþq: ð2:10Þ

There is no damping term here since the anharmonic terms in the
electron–phonon Hamiltonian are neglected. Note that this closely
resembles the phenomenological model given in Eq. (2.3) and pro-
vides an expression for the driving term. Here, nk,k+q is the Fourier
transform of the electronic density matrix

qelðrÞ ¼
e
V

X
k;q

nk;kþqeiqr: ð2:11Þ

The rapid creation of electrons/holes by the femtosecond pump
pulse changes the forcing function and triggers the coherent pho-
non oscillations.

Since the wavelength of the pump laser is large compared with
the spacing between atoms in the nanostructure, usually the elec-
trons and holes are created in a macroscopicaly uniform state,
which excites only the q � 0 phonon modes. However, we note that
there are some cases where one can excite q – 0 modes. This can
occur in: (a) superlattices, where the light is absorbed only in the
wells leading to coherent acoustic modes at the superlattice wave
vector, (b) epilayers, where absorption may occur only in a few lay-
ers near the surface and can lead to propagating acoustic phonon
wavepackets, which can modulate the transmission and reflection
of the probe pulse, and (c) with multiple pump pulses that can cre-
ate transient gratings.

To date, coherent phonon studies in carbon nanotubes and
graphene nanostructures have focused primarily on the q = 0 pho-
non modes. These are the RBM and G-modes (iTO and LO modes) in
carbon nanotubes, the G-modes in graphene, and the RBLM modes
in graphene nanoribbons. The various phonon modes are described
in more detail in Section 2.2 below. The iTO mode is the in-plane
transverse optical mode and the LO mode is the in-plane longitud-
unal mode. In addition, D-band (defect oriented phonon mode)
corresponding to a q – 0 phonon mode coupled with elastic scat-
tering of electrons with –q wave vectors have also been observed
by CP spectrscopy in SWCNTs [38] and graphene [39]. One expects
that, in future studies, novel ways to excite other coherent q – 0
modes in these systems will be developed, yielding interesting re-
sults analogous to the case of propagating coherent acoustic pho-
non modes observed in traditional semiconductors. A diagram
showing the vibrational directions for (a) the radial breathing
mode and (b) the seperated G-modes (G+, G-) in a SWCNT is shown
in Fig. 8.

For a carbon nanotube, the notation is slightly more cumber-
some. The equations of motion for CP modes are obtained using
a microscopic description of the electron–phonon interaction. For
each phonon mode in the nanotube, the CP amplitude is given as
[40]

QbvqðtÞ ¼ bbvqðtÞ þ bybv;�qðtÞ
D E

; ð2:12Þ

where the subscript b labels the six phonon modes in the graphene
phonon-dispersion relation, m is the cutting line index (1D Brillouin
zones shown in the 2D Brillouin zone of graphene), and q is the pho-
non wave vector. Equations of motion for Qbmq(t) can be obtained
from the phonon and electron–phonon Hamiltonians, and the only
excited CP modes are the m = q = 0 modes whose amplitudes satisfy
a driven oscillator equation,

@2Qbvq

@t2 þX2
bvqQbvqðtÞ ¼ SbvqðtÞ; ð2:13Þ

which closely resembles the phenomenological Eq. (2.3). Again,
there is no damping term here due to neglect of anharmonic terms
in the electron–phonon Hamiltonian. In what follows, we drop the
v = q = 0 subscripts, but keep the phonon mode label b.

The CP driving function Sb(t) depends on the photoexcited
electron distribution functions. Sanders et al. solved for the
time-dependent distribution functions in the Boltzmann equation
formalism, taking photogeneration and relaxation effects into
account [17]. In CP spectroscopy, an ultrafast laser pulse generates
carriers on a time scale short in comparison with the CP period. An
ultrashort pulse excites coherent vibrational waves through an
impulsive stimulated Raman scattering (ISRS) process treated in
the following section. In our experiments, we use about 12 fs
(60 fs) ultrafast laser pulses to excite G-mode (RBM) CPs with
oscillation periods of around 21 fs (140 fs).

After photoexcitation, the carriers scatter and recombine. The
driving function Sb(t) rises sharply on the time scale of the pump
pulse envelope (�10’s of fs) and then vanishes more slowly on
the carrier relaxation time scale (�several ps). The rapid initial
jump in Sb(t) gives rise to an oscillatory part of the coherent pho-
non amplitude Qb(t) at the CP frequency Xb. The observed CP signal
is proportional to the power spectrum of the oscillatory part of
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Qb(t). The photogeneration rate in the Boltzmann equation de-
pends on the polarization of the incident ultrafast laser pulse. Opti-
cal absorption due to light polarized parallel to the tube axis is
greater than absorption due to light polarized perpendicular to
the axis because of the depolarization effect for perpendicular
polarization [41,42].
2.1.4. Detection of coherent phonons
The detection mechanism for CP oscillations in differential

reflectivity or transmission can vary dramatically, depending on
the system that one is studying. For instance, in polar materials
such as GaAs, both the electrons/holes and phonons can contribute
to the observed oscillations. In this case, one solves the coupled
plasmon–phonon mode equations and both modes can contribute
to the oscillatory response. At high densities, the phonon modes
are screened by the photoexcited carriers, and the frequency of
oscillations shifts. When the photoexcited carriers are not gener-
ated uniformly in the sample but are only generated typically with
a Gaussian profile within the pump laser spot and within an
absorption depth of the surface, one has to consider carrier diffu-
sion effects [43–46], as well as reduction of the effect of the plasma
contribution to the signal since it is density dependent and varies
with position in the spot [24].

In the case of SWCNTs, the coherent RBM oscillation changes
the tube diameter as a function of time. Since the energy bandgap
of seminconducting SWCNTs is inversely proportional to the tube
diameter, the CP RBM mode effectively modulates the bandgap
in RBM frequency. For incoherent RBM phonons whose relative
phase is random, the energy bandgap does not vary with time.

In our calculations of the RBM CP signal, we first generate and
simulate a RBM CP with the laser pump pulse. The pump pulse
triggers a given RBM mode that depends on the tube chirality that
we are modeling. We then use the calculated electron–phonon ma-
trix elements for this mode to produce changes in the electronic
structure, which we assume adiabatically follows the RBM mode.
The calculated electronic structures, at a fixed point in time, (for
an exaggerated CP amplitude) are shown in Fig. 3 for an RBM
and an iLO in (11,0) SWCNT, and a RBLM in a nanoribbon. We then
calculate the time-dependent absorption of the probe pulse using
the time-dependent band structure and then calculate the power
spectrum of this signal.

The effect of coherent RBM diameter oscillations on the SWCNT
bandstructure is illustrated in Fig. 3, where we show the electronic
Fig. 3. (a) The electronic structure in a (11,0) SWCNT. The black lines are the unstrained
electronic structure in a (11,0) SWCNT showing the effect of an LO phonon deformation
nanoribbon (aGNR). The red lines are for a RBLM distortion. The magnitude of the disto
legend, the reader is referred to the web version of this article.)
structure for a (11,0) SWCNT (Fig. 3(a)) for two lattice deforma-
tions. The black lines represent the unstrained electronic structure
and the red lines represent the deformed bands due to an expand-
ing coherent RBM mode at fixed value of the coherent phonon
amplitude, Q. Fig. 3(b) shows the electronic structure for (11,0)
SWCNT strained by an LO mode (red lines) while Fig. 3(c) shows
similar curves for a 7 armchair graphene nanoribbon.

To understand our results calculated by the above method, we
can use a simplified model to gain an approximate understanding
of the detection mechanism. As can be seen from Fig. 3, near the
band edge, the main effect of the RBM (or RBLM for the aGNR) is
to slightly change the bandgap. Since our probe pulse is detecting
in a relatively narrow region near a band gap (either E11 or E22), the
effect on the coefficient of absorption a for small changes in the
gap is therefore:

aðE� EgÞ � a E� E0
g

� �
�
@a E� E0

g

� �
@E

dEg : ð2:14Þ

Since the gap oscillates with the CP frequency, dEg � dEmax
g

cosðXtþ /Þ, we see that the change in the absorption of the probe
pulse due to the CP generated by the pump pulse is

Da � �
@a E� E0

g

� �
@E

dEmax
g cosðXt þ /Þ: ð2:15Þ

We thus see that for the RBM mode in SWCNT and the RBLM modes
in graphene nanoribbons, CP spectroscopy is a derivative spectros-
copy where a0 � @a/@e is observed. The actual signal measured in
the SWCNT CP experiments is the power spectrum in which the
change of the intensity for transmitted light is observed. Hence,
the CP signal should be proportional to

CP �
@a E� E0

g

� �
@E

						
						
2

: ð2:16Þ

In Fig. 4, we plot the absorption spectra for a 0-D system (single, dis-

crete two level system like an exciton), a 1-D system a / 1=
ffiffiffi
E
p� �

, a

2-D system (a � constant) and a 3-D system a /
ffiffiffi
E
p� �

in the top

row. The curves are convoluted with a Lorentzian to take into ac-
count the linewidths of the transitions. We next show the negative
of the derivative of the absorption with respect to energy �@a/@E in
the middle row. Finally, we show the absolute square j@a/@Ej2,
which is approximately what would be measured in a CP
bands. The red lines represent the effect of the RBM expanding deformation. (b) The
(red lines). (c) Similar plots of the electronic structure for a 7 armchair graphene

rtions is exaggerated. (For interpretation of the references to colour in this figure
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Fig. 4. The absorption spectra a, derivative of the absorption spectra �a0 and ja0 j2
for a 0D, 1D, 2D, and 3D system. The absorption curves have been convoluted to
take into account lifetime broadening of the states.

Fig. 5. Calculated phonon dispersion relations of graphene showing the LO, iTO,
oTo, LA, iTA and oTA phonon branches. Reproduced from Ref. [52].

Fig. 6. Raman spectrum of (a) single- and (b) double-layer graphene with excitation
energy of 2.33 eV. Reproduced from Ref. [53].
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experiment for the RBM and RBLM modes in the bottom row. We
note the double peaked structure for both the 0-D and 1-D systems.
Results from this simplified model agree remarkably well with the
full calculation discussed above.

2.2. Phonons in graphene and carbon nanotubes

Here we briefly describe the graphene phonon dispersion rela-
tions. Since the unit cell of monolayer graphene contains two car-
bon atoms, there are six phonon dispersion relations of which
three are acoustic branches (A) and three are optic phonon
branches (O). Further, two of the six phonon branches are longitu-
dinal (L) modes and the remaining four are transverse (T) modes. In
a L (T) phonon mode, the vibration direction is parallel (perpendic-
ular) to the wave propagating direction as specified by the phonon
wave vector q. The four T phonon modes consist of two in-plane
phonon modes (iTA and iTO), whose vibration direction is within
the graphene plane, and two out-of-plane phonon modes (oTA
and oTO), whose vibration direction is out of the graphene plane.
Since LA and LO phonon modes are always in-plane phonon modes,
we do not need ‘‘i’’ for LA and LO.

Therefore, along the high symmetry C ? M, C ? K directions,
the six phonon dispersions are plotted in which the LO, iTO, oTO,
LA, iTA, and oTA phonon modes, as shown in Fig. 5. In solids, only
q = 0 phonon modes (zone center phonon modes) are observed as a
first-order Raman process. According to group theory [4], the
degenerate zone-center LO and iTO phonon modes belong to the
two-dimensional E2g representation, and they are Raman active
modes known as the G band [4], [47]. The oTO phonon modes
are not Raman active (but infra-red active) phonon modes since
the area of the unit cell does not change by the vibration and thus
there is no electron–phonon matrix element. If we consider sec-
ond-order Raman processes, the restriction of q = 0 is relaxed,
and non-zone-center phonon modes can become Raman active
[48]. For example, the phonon modes around the K-point are
important, since the D-band and G0 (or 2D)-band are related to
phonon modes in the vicinity of the K-point. Usually the second-
order Raman process may give a broad and weak Raman signal.
However, if we have a so-called double resonance process in which
two intermediate states are resonant (energy and momentum con-
served) states, then the double resonance Raman signal is sharp
and strong compared with the first-order Raman process [48].
In the presence of free carriers (electrons and holes) at the Fer-
mi energy, the frequency of the LO and iTO phonon branch near the
C point and iTO phonon branch near the K-point become soft and
broad because of the virtual excitation of electron–hole pairs due
to the electron–phonon interaction with free carriers (the Kohn
anomaly) [49]. When one applies a gate voltage to graphene, the
phonon frequency can be changed as a function of gate voltage
(or the Fermi energy) [50,51].

Two notable Raman modes of monolayer graphene are the
G-band appearing at around 1582 cm�1 and the G0 band at about
2700 cm�1 [53]. In Fig. 6, using laser excitation at 2.33 eV, the
Raman spectrum shows four prominent peaks for (a) single- and
(b) double-layer graphene. The G-band peak is a first-order intra-
valley Raman scattering, which corresponds to the E2g phonon
(LO and iTO modes) at the C point (Fig. 7(a)); the G band can be
seen in any graphene related materials. The D band around
1350 cm�1 are second-order intervalley scattering processes (scat-
tering from K to K0 (or K0 to K) Dirac cones in the 2D Brillouin zone),
which consists of iTO phonon emission and an elastic scattering
due to the lattice defect with q vectors connecting K and K0 points
(Fig. 7(b)). Because of the double resonance condition for q, the D
band frequency increases by 54 cm�1 with increasing laser energy
by 1 eV, which is known as the dispersion effect. The G0 band is a
two-phonon, inter-valley, double resonance process of the iTO
phonon mode near the K point (Fig. 7(c)), whose dispersion is
108 cm�1/eV. It is important to note that the G0 band is not an over-
tone mode of the D band since defect scattering is (not) involved
for the latter (former). In fact, the G0 band appears in a high-quality
crystal without any defects, and the G0 band frequency is slightly
smaller than the twice the D band frequency for a given laser



Fig. 7. Scattering mechanisms of photo-excited carriers for the various Raman
modes in graphene: (a) First-order G-band process. (b) One-phonon second-order
double resonance process for D-band. (c) Two-phonon second-order double
resonance process for G0 band. The dashed line shows defect-related elastic
scattering, whereas solid lines show inelastic scattering.

Fig. 8. Schematic pictures of vibrational directions for (a) the radial breathing mode
and (b) the tangential G-modes.
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energy. The overtone of the G band is located 3248 cm�1, which is
more than twice the energy of the band. Scattering mechanisms of
each Raman mode D, G, and G0 are shown in Fig. 7. In addition, we
note that the G⁄ band at around 2450 cm�1 represents double res-
onant Raman mode, which is arising by both a combination mode
of the LA and the iTO phonon, and an overtone mode iTO with q = k
double resonance condition [54].

In the case of SWCNTs, the phonon wave vector q becomes dis-
crete via the periodic boundary condition around the circumferen-
tial direction while in the direction of the nanotube axis q is
continuous as in one-dimensional materials. Thus, a zone folding
procedure, similar to that for electronic band dispersions, is ap-
plied to obtain the phonon dispersion relations and phonon den-
sity of states for SWCNTs from those of the 2D graphene sheet
[55]. Contrary to 2D graphene, the SWCNT shows many phonon
branches in the phonon dispersion curve and a number of one-
dimensional singularities in the phonon density of states appear
(1D van Hove singularities). Raman modes of a SWCNT are similar
to those of graphene, but there is a unique Raman mode in SWCNT,
called the radial breathing mode (RBM), in which the diameter of a
SWCNT, dt vibrates as shown in Fig. 8(a). The RBM phonon fre-
quency for (bundled) SWCNTs is generally expressed by a simple
formula,

xRBM ¼ A=dt þ B; ð2:17Þ

where the fitting parameters A and B are given by 223.5 nm cm�1

and 12.5 cm�1, respectively [56], corresponding to Raman shifts of
100 cm�1< xRBM < 500 cm�1 for SWCNTs with diameters of
0.4 nm < dt < 3 nm.

The assignment of (n,m) of a SWCNT is given by resonant Raman
spectroscopy [57], in which one compares the laser energy and
Raman shift of RBM with the calculated results of resonant Eii

and phonon frequency, respectively. If a laser energy is resonant
with Eii, then the Raman signal of a particular (n,m) SWCNT species
becomes strong (resonance Raman effect) even in a chirality-mixed
sample. From information of xRBM from either Raman spectros-
copy [58] or coherent phonon spectroscopy [59], one can know
the value of dt and hence identify the index i in Eii from the empir-
ical Kataura plot (Eii values of all (n,m) SWCNTs as a function of dt)
[18,60].

The G-mode in a SWCNT, which is the E2g mode of 2D graphene,
is split into two – the G+ (higher frequency) and G� (lower fre-
quency) modes – because of the curvature of the cylindrical struc-
ture. In semiconducting SWCNTs, G+ (G�) corresponds to the LO
(iTO) phonon mode, in which the vibration direction is parallel
(perpendicular) to the nanotube axis (see Fig. 8(b)); the separation
between the G+ and G� modes is inversely proportional to the
square of dt [61]. The relative intensities of the G+ and G� peaks de-
pend on the chiral angle of the SWCNT [62]. In addition to the two
main peaks of G+ and G�, which have A symmetry of the Cn point
group for a chiral SWCNT [4], E1 and E2 symmetry of the Cn point
group are also Raman active, although their peak intensities are ex-
pected to be much weaker than that of A symmetry.

In the case of a metallic SWCNT, there are also two peaks G+ and
G�, but being assigned to the iTO and LO phonon, respectively. The
electron–phonon interaction acts only on the LO phonon mode
(G�), and the G� peak becomes broad and soft because of the Kohn
anomaly effect [61,63]. Thus, by changing the gate voltage, the G�

peak changes drastically [51] and is chirality dependent [64].
3. Experimental methods

Fig. 9 schematically shows the degenerate pump–probe spec-
troscopy experimental setup that we used for coherent phonon
studies of SWCNTs and graphene. The excitation source was a
Ti:sapphire laser oscillator with a pulse duration of 12 fs, which
is shorter than one period of the G-mode oscillations in SWCNTs
(21 fs). The output beam from the laser was divided into a pump
and a probe beam by a 7:3 beam splitter, and the two laser beams
overlapped at the same spot on the sample surface. The probe
beam was delayed in time with respect to the pump beam by
changing the optical path length using a computer-controlled de-
lay stage. All experiments were done in the transmission geometry,
where the change in the differential transmission of the probe
beam was measured as a function of time delay.



Fig. 9. Degenerate pump–probe spectroscopy experimental setup. The half-wave plate (k/2) in the pump beam path is used for measuring pump-polarization dependence,
and the band-pass-filter (BPF) set in a wheel is used for spectrally resolved detection. The difference between the probe and reference beams is measured by the balanced
detector.
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The probe beam was further split into two by a 9:1 beam split-
ter, and the weaker beam was used as the reference beam for the
balanced detector. A shaker was used as a fast-scanning delay line
for producing real-time signals. We captured a time window of
5 ps with a shaker amplitude of 0.7 mm and a shaker scan rate of
10 Hz. The half-wave plate in the pump beam path was used for
rotating the pump polarization with respect to the probe polariza-
tion in polarization-dependent measurements. The band-pass-
filter (BPF) set, which is mounted in a motorized wheel located
in front of the detector, was used for spectrally resolved measure-
ments. The center wavelength of the BPF ranged between 700 to
890 nm, with a 10 nm step size.

Furthermore, for selective excitation of a specific chirality in
SWCNTs, we generated a train of pump pulses with a repetition
rate that coincides with the RBM frequency of the SWCNTs, using
pulse-shaping techniques [65,66]. As schematically shown in
Fig. 10, the pump beam enters the pulse shaping setup, which
Fig. 10. Generation of high-repetition-rate pulse t
consists of a patterned mask centered between a pair of gratings.
The different frequency components of the input pulse are spatially
dispersed by the first grating, and the amplitude and/or phase of
each frequency component is modified by the mask. A second lens
and grating recombine all the frequencies into a single, collimated
beam. The shaped output pulse train was then obtained with the
Fourier transformed pulse shape given by the Fourier transform of
the pattern transferred by the masks onto the spectrum.

In our experiments, phase masks were fabricated on quartz sub-
strates by standard lithographic techniques with reactive ion etch-
ing. This procedure yields a binary phase mask, with the phase
difference, D/, given by D/ = 2p(n � 1)D/k, where n is the refrac-
tive index, D is the etch depth, and k is the optical wavelength.
Pulse trains were generated with these phase masks consisting of
periodic repetitions of the M (maximal length) sequence [67,68].
The details of the mask design are given in Ref. [66]. For a phase
retardation of 0.84 p, the required depth was �0.73 lm. With a
rains by spectral filtering, adapted from [65].



Fig. 11. Layout of a part of the phase mask designed to produce pulse trains with
repetition rates ranging from 7.45 THz (top, 134 fs) to 6.25 THz (bottom, 160 fs) for
our specific experiments. The repetition period increases by 0.05 THz per pattern
from top to bottom. The shaded regions are not etched during the fabrication
process.

Fig. 12. (a) Raw pump–probe time-domain data taken at an 800 nm center photon
wavelength. (inset) zoom-in of the data between 0.3 and 6 ps. (b) CP oscillations
excited and measured at five different photon energies. The traces are offset for
clarity. Reproduced from Ref. [10].
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p-phase delay, the central pulse in the shaped pulse train would be
missing from the pulse train [66]. Fig. 11 shows the layout of a part
of the phase masks we designed for producing a train of pump
pulses having a desired repetition rate [69]. This mask contains
25 phase patterns, each of which has a different spatial periodicity
and is designed to produce a pulse train with a different repetition
rate, ranging from 7.45 THz (top, 134 fs) to 6.25 THz (bottom,
160 fs) in 0.05 THz (�1 fs) intervals. The phase masks were suffi-
ciently wide to pass the entire input bandwidth.
4. Experimental results and discussion

4.1. Real-time observation of coherent lattice vibrations in SWCNTs

With the advent of ultrafast spectroscopy, one can probe time
dependent electronic and vibrational dynamics [26,70]. In this sec-
tion, we discuss the time dependent observation of lattice vibra-
tions in SWCNTs. Using pump–probe spectroscopy, we generated
and detected the radial breathing mode (RBM) CPs in individual
SWCNTs, with no photoluminescence or Rayleigh scattering back-
ground, and with excellent resolution as compared with continu-
ous-wave resonant Raman scattering (CW RRS).

The sample used in this study was a micelle suspended SWCNT
solution with tube diameters ranging from 0.7–1.3 nm [71]. The
tubes were individually suspended with sodium dodecyl sulfate
in D2O via ultrasonication and centrifugation. Using a Ti:sapphire
laser with a �50 fs pulse and �20 mW average pump power, we
performed degenerate pump–probe measurements at room tem-
perature. We tuned the center wavelength in 5-nm steps from
710 to 860 nm (1.74–1.43 eV) by controlling the slit between the
intra-cavity prism pair in the Ti:sapphire laser. For comparison,
CW RRS experiments were performed on the same sample, for
which the excitation source was a CW Ti:sapphire laser with a
power of 15 mW, and signal collection was done using a triple
monochromator and a CCD camera.

Fig. 12(a) shows a typical example of the raw pump–probe data
taken on our SWCNT sample at an 800 nm center photon wave-
length. The large electronic contribution is seen at time-zero along
with a weaker decaying oscillatory component due to the RBM CPs.
Fig. 12(b) shows CP oscillations in SWCNTs excited at different
pump photon energies. Each trace consists of a superposition of
multiple RBM modes with different frequencies, exhibiting a
strong beating pattern, which changes with the photon energy.
The observed CP oscillations are dominated by RBM modes, which
are resonantly enhanced by pulses commensurate with their un-
ique electronic transitions. The decay time of the dominant RBM
CP oscillations was �5 ps.

To determine the frequencies of the excited lattice vibrations,
we took a fast Fourier transform (FFT) of the time-domain
oscillations (subtracting off the slow background signal due to
the photo-exicted carrier dynamics) shown in Fig. 12(b) and dis-
play the results in Fig. 13(a). For comparison, we show CW RRS
spectra in Fig. 13(b). Strong CP spectra are seen in three distinct
frequency regions, similar to what is seen in CW RRS spectra. The
main peak positions in Fig. 13(a) and (b) coincide, indicating that
the oscillations in Fig. 12(a) are due to RBM CPs. However, we find
a few noticeable differences between the CP and CW RRS data.
First, unresolved shoulder features in RRS are seen as clear peaks
in the CP spectra due to the narrow line widths. Second, there
are different intensity distributions among the strongest peaks in
the three distinct frequency regions. Finally, the lineshapes in the
CP spectra show a surprising double-peaked dependence on the
photon energy. (This has been discussed briefly in Section 2 above
and is related to the modulation of the band gap by the RBMs).

For a comparison of the line widths between CP spectra and CW
RRS spectra, Fig. 14(a)–(c) are presented. The CP spectra were ob-
tained with different wavelengths and are overlaid with the equiv-
alent RRs spectra taken at the same wavelengths of 710 nm
(1.74 eV), 765 nm (1.61 eV), and 830 nm (1.49 eV), respectively.
While there is overall agreement between the two sets of spectra
in each figure, it is clear that several features are more easily re-
solved in the CP data. The narrower CP line widths make it possible



Fig. 13. (a) A 3D plot of the FFT of CP oscillations obtained over a photon energy
range of 710–850 nm (1.74–1.45 eV) with a 5-nm step size. (b) A 3D plot of RRS
over an excitation energy range of 710–850 nm (1.74–1.45 eV) with a 5-nm step
size. Reproduced from Ref. [10].

Fig. 14. Phonon spectra using three different photon energies obtained from RRS
and CP spectroscopy measurements. The traces are offset for clarity. Reproduced
from Ref. [10].
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to resolve blended peaks in the RRS data. With less overlap be-
tween nearby peaks, more precise determination of line positions
is possible. Through peak fitting to Lorentzian lineshapes, we have
identified and assigned 18 RBM peaks in the CP spectra with an
average measured line width of �3 cm�1, while line widths mea-
sured in CW RRS were consistently 5 – 6 cm�1.

In order to explain the origin of the double peak, we finally dis-
cuss how the generation of coherent RBM phonons modifies the
electronic structure of SWCNTs and how this can be detected as
temporal oscillations in the transmittance of the probe beam. The
RBM CP is a macroscopic vibration of the nanotube lattice in the ra-
dial direction so that the diameter (dt) periodically oscillates at an
angular frequency xRBM. The electronic states adiabatically follow
the RBM oscillations. This approximately causes the band gap Eg

to oscillate at xRBM since Eg is inversely proportional to the nano-
tube diameter (see Fig. 15(a) and also Fig. 3(a)). As a result of this
bandgap oscillation, the interband transition energies oscillate in
time, leading to ultrafast modulation of the optical constants at
the angular frequency xRBM. Furthermore, these modulations also
imply that the absorption coefficient at a fixed probe photon energy
is modulated at xRBM. Equivalently, the photon energy dependence
of the CP signal shows a derivative-like behavior (see Figs. 15(b)–(c)
and 4). We modeled this behavior assuming that the CP signal
intensity is proportional to the absolute value of the convoluted
integral of the first derivative of a Lorentzian absorption line and
a Gaussian probe beam profile. The symmetric double-peak feature
in Fig. 15(b) and (c) confirms the excitonic nature of the absorption
line, in contrast to the asymmetric shape expected from the 1D van
Hove singularity shown in Fig. 4.

4.2. Chirality selective excitation of coherent RBM phonons in SWCNTs
by using tailored femtosecond pulse trains

In this section, a novel method is presented that allows us to
study single-chirality nanotubes in ensemble samples containing
nanotubes of many different chiralities. Specifically, we have uti-
lized the techniques of femtosecond pulse shaping [65,66,72], as
described in Section 3.3, in ultrafast pump–probe spectroscopy of
SWCNTs to selectively excite the coherent lattice vibrations of the
radial breathing mode (RBM) in nanotubes of specific chiralities.

For this particular experiment, we combined the pulse-shaping
apparatus (Fig. 10) with the pump–probe setup (Fig. 9). The pulse-
to-pulse interval in multiple pulse trains was selected to corre-
spond to the period of a specific RBM. Among different species of
nanotubes, those having RBM frequencies that are matched to



Fig. 15. (a) Time-dependent band gap due to the RBM of coherent lattice
oscillations. (b,c) The photon energy dependence of the CP signal intensity (both
contour and 2D plots) for the (12,1) tube with a probe bandwidth of (b) 25 nm and
(c) 35 nm, together with theoretical curves. (solid line without dots). Reproduced
from Ref. [10].
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the repetition rate of multiple pulse trains will generate large-
amplitude coherent oscillations with increasing oscillatory re-
sponse to each pulse, while others will have diminished coherent
response [69,73,74].

The strength of our pulse-shaping technique is shown in Fig. 16.
Real-time observation of coherent RBM oscillations is possible
without pulse-shaping by employing standard femtosecond
pump–probe spectroscopy [10,59]. Fig. 16(a) shows the resulting
transmission modulations of the probe beam induced by coherent
phonon lattice vibrations, which were generated by pump pulses
with a pulse duration of 50 fs and a central wavelength of
800 nm. The time-domain beating profiles reflect the simultaneous
generation of several RBM frequencies, which are clearly seen in
the Fourier-transform of the time-domain data in the right of
Fig. 16(a). However, we cannot obtain detailed information on
dynamical quantities such as the phonon oscillation phase because
the phonon modes overlap one another.

By introducing pulse-shaping, using multiple pulses with differ-
ent repetition rates to excite RBM CP oscillations, chirality selectiv-
ity was successfully obtained as shown in Fig. 16(b)–(e). With the
appropriate pulse train repetition rate, a specific chirality RBM CP
oscillation dominates the signal while the RBM CP oscillations from
other nanotubes are suppressed. For example, by choosing a pump
repetition rate of 7.07 THz, we can selectively excite the (11,3)
nanotubes, as shown in Fig. 16(b). Similarly, with a pump repeti-
tion rate of 6.69 THz, the (10,5) nanotubes are selectively excited
(see in Fig. 16(c)). We note that both nanotubes contributed when
the pump repetition rate was tuned to the middle of the RBM fre-
quencies for (11,3) and (10,5) nanotubes [11]. The accuracy of
selectivity depends on the number of pulses in the tailored pulse
train as well as on the distribution of chiralities in the nanotube
ensemble. Also, selective excitation of a specific chirality requires
the pump energy to be resonant with the corresponding second
interband (or E22) transition (see Fig. 17).

By placing a series of 10-nm band pass filters in the probe path
before the detector, we can measure the wavelength-dependence
of RBM-induced transmission changes in order to understand ex-
actly how the tube diameter changes during coherent phonon
RBM oscillations and how the diameter change modifies the nano-
tube band structure. As seen in Fig. 18, the differential transmis-
sion is shown for three cases, corresponding to wavelengths
below resonance, at resonance, and above resonance, respectively,
for selectively-excited (11,3) carbon nanotubes. The amplitude and
phase of oscillations vary noticeable for varying probe wave-
lengths. Specifically, the amplitude of oscillations becomes mini-
mal at resonance, and in addition, there is clearly a phase shift
between the above- and below-resonance traces. Because the band
gap energy and diameter are inversely related to each other in
SWCNTs, and because it is the RBM frequency at which the diam-
eter is oscillating, we can conclude from this data that the energy
of the E22 resonance is oscillating at the RBM frequency. In other
words, when the band gap is decreasing, absorption above (below)
resonance is decreasing (increasing), resulting in positive (nega-
tive) differential transmission.

4.3. Coherent G-mode lattice vibrations in SWCNTs

In this section, the generation and detection of coherent oscilla-
tions of the G-band phonon in SWCNTs with frequency �
1580 cm�1 (period � 20 fs) is discussed [16]. A previous ultrafast
optical study of SWCNTs by Gambetta et al. revealed anharmonic
coupling between the coherent RBM and tangential G-band, lead-
ing to a frequency modulation of the G mode by the RBM [59]. Also,
Kato and co-workers observed a complex polarization dependence
of coherent G-mode oscillations in aligned SWCNTs, which was ex-
plained in terms of a superposition of G band phonons with differ-
ent symmetries [38]. We performed degenerate pump–probe
measurements with broad band light source from a Kerr-lens
mode-locked Ti:sapphire laser with a pulse duration of about
12 fs. The center wavelength of the laser spectrum was around
800 nm (1.55 eV), with a spectral bandwidth of about 100 nm
(200 meV), which is comparable to the G+-mode vibrational energy
(197 meV) in SWCNTs. The probe pulses were spectrally filtered
after the sample (before the detector), by using a series of band-
pass filters with a 10-nm band pass centered at various wave-
lengths. Pump-induced and spectrally-resolved transmission or
scattering modulations were measured as a function of the time
delay between pump and probe pulses.

Fig. 19(a) shows the raw pump–probe experimental results in
isolated SWCNTs. Time-domain intensity modulations of a probe
beam of energy � 1.46 eV (850 nm) are clearly seen. The trace in
the inset was obtained after subtracting the overall exponential
decaying components that correspond to the relaxation process
of photo-excited electrons [75]. The oscillatory signal, which orig-
inates from the coherent lattice vibrations excited by the pump
pulse, is composed of high-frequency and low-frequency contribu-
tions. As is confirmed from the fast Fourier-transformed power



Fig. 16. (a) (Left):Time-domain transmission modulations of the probe due to coherent RBM vibrations in ensemble SWCNT solution generated using standard pump–probe
techniques without pulse shaping, (Right): Fourier transformation of time-domain oscillations with chirality assigned peaks. (b–e) (Left): Time-domain coherent RBM
oscillations selectively excited by multiple pulse trains via pulse shaping with corresponding repetition rates of 7.07 THz � 6.15 THz, (Right): Fourier transformations of
corresponding oscillations, with their dominant nanotube chirality (n,m) indicated. Adapted from Ref. [11].
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spectrum in Fig. 19(b), the low-frequency signal at around 7 THz,
corresponding to RBM peaks, reveals that the sample contains sev-
eral chiralities of SWCNTs, each having a different RBM frequency,
that are resonantly excited at 850 nm [10]. The focus in this section
is centered on the dynamics and the detection mechanism for the
high frequency G-mode oscillations of SWCNTs, having a vibra-
tional frequency of 47.69 THz (1590 cm�1) in the Fourier-trans-
formed spectrum.

As fully described in Sections 2.1.4 and 4.1, for the RBM CP oscil-
lations, the change in the absorption coefficient due to RBM-
induced bandgap oscillations provide a straightforward explanation
for the appearance of CP oscillations in pump–probe differential
transmission. The G-mode distortion of the lattice can also modify
optical constants of carbon nanotubes, but our theoretical calcula-
tions [17] suggest that the absorption coefficient modulations due
to the G-mode vibrations are expected to be 1000 times smaller
than those due to the RBM. Thus, from the fact that the coherent
G-mode signal is comparable to the RBM signal as in Fig. 19(b)
as well as from the dependence of the signal on the probe energy,
we came to a conclusion that a different detection mechanism is at
play for the G-mode.
As the spectral window for the probe pulse is applied by band-
pass filters depicted in the upper part of Fig. 20, the G-mode oscil-
lations exhibit a strong dependence on the probe wavelength in
amplitude. The lower part of Fig. 20 shows the probe intensity
modulations from the coherent G-mode oscillations at different
probe energies, 1.65 eV (750 nm), 1.55 eV (800 nm), and 1.46 eV
(850 nm). It is interesting to see that the signal is almost com-
pletely suppressed when the probe signal energy is close to the
center of the laser spectrum, while strong oscillations are observed
at 1.65 eV or 1.46 eV, which are each separated from the center en-
ergy by roughly half of the G-mode energy (�200 meV). Addition-
ally, the G-mode amplitude decays monotonically with time delay
for each wavelength while having slightly different dephasing
times and the signal at lower probe energy tends to decay faster
than that at higher energy.

Fig. 21(a) shows the G-mode amplitude as a function of the
probe energy. The amplitude curve features two peaks with each
maximum occurring near the probe energy of 1.46 and 1.66 eV,
respectively, which are separated from each other by the G-mode
energy, while having a local minimum near the center energy of
the laser spectrum. We show below that this intriguing probe



Fig. 17. Specific chiralities are excited for different resonant excitation energies at (a) 840 nm (1.48 eV) and (b) 800 nm (1.55 eV). In the case of 1.48 eV excitation energy, by
choosing a pump repetition rate of 6.1 THz, the (11,6) nanotubes are selectively excited. Similarly, we can selectively excited the (12,1) nanotubes with a pump repetition rate
of 7.2 THz.

Fig. 18. Differential transmission as a function of time delay at probe wavelengths
of 780 nm, 795 nm, and 810 nm for the selective RBM excitation of the (11,3)
nanotubes There is a p phase shift between the 780 nm and 810 nm data. These
three wavelengths correspond to below, at, and above the second exciton
resonance, respectively, of (11,3) nanotubes.
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wavelength dependence of the amplitude shown in Fig. 21(a) can
be explained by taking the coherent Raman processes into account.

The probability P for stimulated Stokes (anti-Stokes) scattering
to occur at a certain energy E, will be proportional to both the
stimulating photon intensity I(E) and the stimulated Stokes (anti-
Stokes) photon intensity I(E � ⁄x)(I(E + ⁄x)) such that;

PSSRSðEÞ / IðEÞ � IðE� �hxGÞ � nG; ð4:1Þ
PSARSðEÞ / IðEÞ � IðEþ �hxGÞ � nG; ð4:2Þ

where nG is the occupation number for the coherent G-mode which
was generated by the pump pulse and the G-mode phonon energy.
Simulations of the scattering intensity for the two coherent Raman
scattering processes, as shown in Fig. 21(b), were carried
out assuming a Gaussian laser spectrum centered at 1.55 eV with
a FWHM spectral width of around 195 meV, similar to our
experimental conditions. The relatively good agreement between
the experimental results in Fig. 21(a) and the simulations imply that
the detection mechanism is due to impulsively stimulated Stokes
and anti-Stokes Raman processes in the probe pulses. Thus, we as-
sign the coherent G-mode signal measured near 1.46 eV to the con-
tribution from the SSRS process for incoming photons near 1.66 eV,
and the signals near 1.66 eV are generated through the SARS
process from the incoming photons near 1.46 eV. We note that
the energy of the amplitude dip changed accordingly as we tuned
the center of the laser spectrum.

For impulsively stimulated Raman scattering, where two pho-
tons whose energies are separated by the phonon energy are incor-
porated, the time sequence between those photons may influence
the scattering efficiency, especially when the real electronic transi-
tions of the nanotubes are incorporated for the stimulated photons,
such that the excited state can be sustained for an extended period.
If a photon with a higher energy precedes a lower energy photon,
the SSRS process will be more efficient than the SARS process, and
vice versa.

The time sequence of the photons can be controlled by adding
or subtracting dispersion by adjusting the optical path length
through the fused silica prism, which was used initially for disper-
sion compensation of all the optical elements to get the shortest
pulse at the sample position. The modification of the dispersion
can result in chirp such that the high (low) wavelength compo-
nents arrive earlier than the low (high) components for the case
of negative (positive) dispersion, shown in Fig. 22.

By controlling the dispersion in ultrashort pulse, we preferen-
tially drive one process between SSRS and SARS. The SARS (SSRS)
process is dominant on the positive (negative) dispersion, as
shown in Fig. 23(a). Fig. 23(b) shows the phonon amplitude at
1.65 eV corresponding to the SARS contribution and that at
1.46 eV of the SSRS one as a function of the applied dispersion va-
lue. For positive (negative) dispersion, the SARS (SSRS) signal is
stronger than the SSRS (SARS) signal, which is in good agreement
with the consideration of the order between stimulating and stim-
ulated photons for the detection processes. We note that the dis-
persion given to the pump pulse can modify the excited phonon
amplitude but cannot explain the observed dependence of each
coherent Raman process occurring within probe pulses.



Fig. 19. Coherent phonon oscillations in single-walled carbon nanotubes and their
fast Fourier transform power spectrum are shown. (a) Time-domain probe intensity
modulations measured at 850 nm detection wavelength using a Band-pass filter
(BPF). The low frequency oscillation with 160 fs is RBM mode, and tangential G-
mode emerges through the oscillation of 21 fs period. (b) Corresponding FFT
spectrum in the frequency domain showing RBMs from 6.0 � 7.5 THz
(200 � 250 cm�1) and G-mode at 47.69 THz (1590 cm�1). Adapted from Ref. [16].

Fig. 20. Coherent G-mode oscillations in the time-domain are measured at different
probe energies, 1.65 eV (750 nm), 1.55 eV (800 nm), and 1.46 eV (850 nm) using
band-pass Filters. From these oscillations, the phonon decay times of the G-mode
oscillations are fitted to 2.036 ps at the 1.65 eV detection energy and 1.369 ps at the
1.46 eV energy. Adapted from Ref. [16].

Fig. 21. (a) G-mode oscillation amplitude as a function of the probe energy,
featuring two peaks located near 1.47 eV and 1.66 eV, which correspond to the
signal from the SSRS and the SARS processes respectively. (b) Simulated spectral
intensity curves for the SSRS and the SARS processes obtained for a Gaussian laser
spectrum centered at 1.55 eV with a spectral width of 195 meV FWHM. Adapted
from Ref. [16].

Fig. 22. Scheme of time sequence of photons by controlling the dispersion. The
modification of the dispersion can result in chirp such that the high (low) energy
components arrive earlier than the low (high) components for the case of negative
(positive) dispersion. Adapted from Ref. [16].
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4.4. E11-resonant coherent phonon generation in SWCNTs

In Section 4.1, we described the observation of coherent phonon
(CP) oscillations of radial breathing modes in SWCNTs generated
via impulsive excitation of E22 optical transitions [10,11,17].
We also showed CP spectroscopy has several advantages over
Raman spectroscopy, including no Rayleigh scattering and PL
backgrounds. In this section, we use these advantages to study
CP oscillations of RBMs in smaller-diameter SWCNTs, synthesized
by the CoMoCAT method, which have E11 transitions within the
wavelength range accessible with a Ti:sapphire laser.



Fig. 23. (a) Oscillation amplitudes as a function of probe wavelength, which were
obtained using negative dispersion (red), transform-limited (black), and positive
dispersion (blue) pulse chirps. (b) Phonon amplitude at 1.66 corresponding to the
SARS contribution and that at 1.47 corresponding to the SSRS contribution,
measured as a function of applied dispersion. Adapted from Ref. [16]. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 24. Coherent phonon oscillations measured at center wavelengths of (a)
720 nm to 860 nm and (b) 880 nm to 1000 nm, using degenerate pump and probe
pulses. Reproduced from [13].
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The sample used in this study was an aqueous suspension of
CoMoCAT SWCNTs [13]. Multiple RBMs of SWCNTs corresponding
to different diameters were simultaneously excited within the
broad 30–40 nm bandwidth of 40–50 fs pulses from a Ti:sapphire
oscillator through degenerate pump–probe differential transmis-
sion spectroscopy. We tuned the center wavelength of the pump
beam over a wide wavelength range of 720 – 1000 nm in steps
of 5 nm to investigate the E11 and E22 transitions.

Fig. 24 shows CP oscillations of RBMs resonantly excited
through E11 and E22 optical transitions at selected excitation wave-
lengths within the 720 – 1000 nm (1.23 eV – 1.71 eV) range. Each
trace shows a strong beating pattern due to the simultaneous exci-
tation of multiple RBMs, which sensitively changes with the pho-
ton energy, implying that the CP oscillations are dominated by a
few resonantly excited RMBs. The data at the longer wavelengths
(see Fig. 24(b)) show a normalized differential transmission (DT/
T) of the order of �10�4 near time zero, which is 2–3 times larger
than that for the shorter wavelength excitation (Fig. 24(a)).

Fig. 25(a) shows contour plot of the CP intensity on a log scale as
a function of photon energy (1.23–1.71 eV) and RBM frequency
(155–400 cm�1), obtained through a Linear Predictive Singular Va-
lue Decomposition (LPSVD) analysis on the measured time-domain
data [13]. Fig. 25(b) shows representative CP spectra for excitation
wavelengths of 720–740 nm (E22 optical transition) with a step
size of 5 nm, exhibiting three dominant RBMs between 240 and
280 cm�1, corresponding to (11,0), (10,2), (9,4), and (8,6) SWCNTs.
The peak at 306 cm�1 is due to the E22-excited RBM of (9,1) tubes
(E22� 1.76 eV), with some contribution form (6,5) tubes excited be-
tween E11 and E22. The black curve in Fig. 25(c) was taken with
765 nm (1.62 eV) excitation, showing E22-resonant CPs for the
(2n + m)= 25 family [(12,1), (11,3), and (10,5)]. The red curve in
Fig. 25(c) was taken with 965 nm (1.28 eV) excitation, showing
comparable strength of E11-resonant CPs for the (2n + m)= 19
family [(8,3), (9,1)] and the (2n + m)= 17 family [(6,5), (7,3)] in
spite of different chirality type between two families.

4.5. Polarization dependence of coherent phonon in highly aligned
SWCNTs

Given the quasi-1D nature of SWCNTs, single-tube and ensem-
ble samples have strong polarization anisotropy that is dominant
in photoluminescence (PL), absorption, and Raman measurement
[77–82]. Similar anisotropy effects are expected with bulk samples
[83]. Here, the anisotropic optical and vibrational properties of a
bulk film of highly-aligned SWCNTs are studied using polarization
dependent coherent phonon (CP) spectroscopy and a microscopic
theoretical model is developed to explain the observed extreme
anisotropy [14,38].

Such highly-aligned bulk films are grown via chemical vapor
deposition (CVD), where vertically aligned patterned arrays of
SWCNTs are transferred to a sapphire substrates and converted
to horizontally aligned SWCNTs having ultralong lengths of �50
lm and separated by a pitch of �50 lm. The bulk sample formed
using this technique is highly aligned with a diameter distribution
ranging between 1 to 5 nm [14,83,84].

A mode-locked Ti:sapphire laser was tuned to a central wave-
length of 850 nm to excite the E44 interband transitions of SWCNTs
in this sample via degenerate pump–probe spectroscopy. Two
types of polarization-dependent measurements are investigated,
as depicted in Fig. 26. Type I configuration maintains the same
polarization for the pump and probe, while the alignment axis of
the sample is rotated. The Type II configuration maintains the same
polarization for the probe and sample, while the pump polarization
is rotated by a half-wave plate.

The results of both Type I and Type II measurements are shown
in Fig. 27. As the polarization angle is rotated, a strong polarization
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anisotropy of the RBM CPs is seen as a function of angle, where the
CP signal is almost completely quenched at 90 degrees for both
Type I and Type II.

A detailed microscopic theory for the generation and detection
of coherent phonons in SWCNTs has been developed that takes into
account a realistic band structure and imperfect nanotube align-
ment in the sample [14,17]. Fig. 28 compares a theoretically deter-
mined cos8(h) dependence for Type I and cos4(/) dependence for
Type II to the experimental results and takes into account the ef-
fects of nanotube misalignment. Such a comparison determined
the nematic parameter of the sample to be 0.81, which indicates
the sample is in fact strongly aligned.

4.6. Observation of coherent lattice vibrations in graphene

Investigations of lattice vibrations in graphitic crystals have
been quite fruitful [9]. Raman scattering studies have revealed a
correlation between the G-mode frequency in Raman spectra and
the number of graphene layers [86], and the spatial mapping of
the layer number can be performed by using a scanning confocal
Raman spectroscopy [53]. In addition, coherent lattice vibrations
in graphite corresponding to an interlayer shearing phonon mode
have been observed [87], and the influence of a non-equilibrium
electron–hole plasma on the femtosecond dynamics of the in-
plane E2g coherent G-mode phonon in graphite has been noted
[88]. Here, our recent work on coherent lattice vibrations in graph-
ene films is briefly described [89].

Fig. 29(a) shows time-resolved modulation of the probe inten-
sity for a single-layer graphene sample (upper trace) and a multi-
layer graphene sample (lower trace), which were obtained after
subtracting a slowly decaying component related to the energy
relaxation process of photo-excited electrons. The vibrational
modes obtained here are the G-band modes at around
1586.5 cm�1 (47.60 THz), which originates from the doubly degen-
erate zone-centered E2g mode, and the D-band at about
1309.8 cm�1 (39.30 THz), related to defects in graphitic materials.
To determine the frequencies of the coherent phonon oscillations,
a fast Fourier transform (FFT) of the time-domain oscillations
shown in Fig. 29(a) was performed; the resulting FFT spectra,
shown in Fig. 29(b), reveal two phonon peaks, the G- and D-peaks.
As was revealed through Raman spectroscopy [53,86,90,91], we
also find that the position of the G-peak is dependent on the num-
ber of graphene layers. The G-peak frequency, 1591 cm�1

(47.74 THz), for the single-layer sample is higher than that of the
multilayered sample at 1586.5 cm�1 (47.60 THz). The frequency
shift of �5 cm�1 between the two samples, which is considered
to originate from the interlayer interaction, is in a good agreement
with the results of Raman spectroscopy [86].

Koga et al. has recently observed coherent phonons in graphene
on silicon with different numbers of layers [39]. High-frequency
coherent vibrations of both the G-mode and the D-mode were ob-
served. The G-mode frequency was found to shift to higher fre-
quencies as the number of graphene layers decreased, whereas
the D-mode did not exhibit any shifts, as shown in Fig. 30. More-
over, the D-mode was observed to shift to higher frequencies as
a function of time. Fig. 30(left) shows the transient reflectivity
changes in graphene on silicon with different numbers of layers.
The changes in a highly oriented pyrolytic graphite (HOPG) are also
shown for comparison. The HOPG shows only one oscillatory com-
ponent with a long dephasing time (�1.0 ps), while the graphene
samples exhibit an apparent modulation of the oscillatory compo-
nents with a short dephasing time (<0.5 ps). In the Fourier trans-
form (see Fig. 30(middle)) of the data exhibit two peaks located
at � 47.5 and �39.5 THz, corresponding to the G-mode and
D-mode, respectively. Fig. 30(right) shows the time–frequency
two-dimensional map of the two modes. The G-mode frequency
is constant in time, whereas the D-mode shifts to higher frequen-
cies with time after 0.2 ps. The authors attribute this shift to
photo-excited, carrier-induced bond softening, combined with
the highly dispersive nature of the D-mode due to a k-selective
double resonance process, but more detailed theory is needed to
explain the observation.

5. Calculations of coherent nanotube RBM and nanoribbon
RBLM phonon amplitudes

A special feature found in the RBM CP phenomena in SWCNTs is
that the tube diameter can initially expand or contract depending
on the nanotube family and laser excitation energy. A similar
behavior is also expected in graphene nanoribbons (GNRs), in
which we have a radial breathing like mode (RBLM) in the direc-
tion of the ribbon width. To understand the physical origin of the
phenomena, we calculate the coherent phonon amplitudes using
both an extended tight binding (ETB) method and an effective mass
theory. We find that the initial expansion and expansion or con-
traction is determined by the k-dependent electron–phonon inter-
action [19,20]. This results in a family dependence of the CP
amplitudes in SWCNTs and armchair GNRs (Sections. 5.1 and
5.2.2, respectively). In the case of zigzag GNRs, the edge states play
an important role in the generation of coherent phonons so that
the CP amplitudes do not depend on the ribbon size (Section 5.2.1).

5.1. Coherent RBM phonons in SWCNTs

Coherent phonon amplitudes are calculated using a computer
program (based on a microscopic theory of coherent phonon oscil-
lations) developed by Sanders et al., which solves a driven har-
monic oscillator equation derived from the Heisenberg equations
of motion [17]. The program makes use of electronic energies
and wave functions obtained from an ETB calculation [92], the pho-
non dispersion relations and corresponding phonon modes [93],
the electron–phonon interaction matrix elements [94], the optical
matrix elements [95], and the interaction of carriers with an ultra-
fast laser pulse.

For the first order process of electron–phonon interaction in
RBM (or G) band, only q = 0 phonon modes are coherently excited.
As we have mentioned many times, for coherent phonons to be ex-
cited, it is necessary for the pump pulse to have a duration shorter
than the phonon period so that the pump pulse power spectrum
has a Fourier component at the phonon frequency. In a microscopic
model of coherent phonon generation, we obtain a simple forced
oscillator equation neglecting oscillation decays, where the coher-
ent RBM phonon amplitude Q(t) with frequency x satisfies a dri-
ven oscillator equation [17]: (Here we rewrite Eq. (2.13) with
b = RBM, and m = q = 0)

@2QðtÞ
@t2 þx2QðtÞ ¼ SðtÞ; ð5:1Þ

subject to the initial conditions Q(0)= 0 and _Qð0Þ ¼ 0. This equation
is very similar to the phenomenological equation shown in Eq. (2.3)
and justifies the phenomenological model. Here S(t) is a driving
force which depends on the photoexcited carrier distribution func-
tion [17]:

SðtÞ ¼ �2x
�h

X
lk

Ml
el�phðkÞdf lðk; tÞ; ð5:2Þ

where Ml
el�ph is the k-dependent RBM electron–phonon matrix ele-

ment for the l-th cutting line, and dfl is the net photogenerated
electron distribution function with a pump pulse pumping at the
Eii transition energy as obtained by solving a Boltzmann equation
for the photogeneration process [17]. The photogeneration rate in



Fig. 25. (a) Two-dimensional log plot of a Fourier transform of CP oscillations measured over a wavelength range of 720–1000 nm (1.71–1.23 eV) with a 5 nm step size. The
squares are for E22 transition, and triangles are for E11 transition from Ref. [76]. Here, m �mod3ðn�mÞ. (b) FFT power spectra for CP oscillations measured at center
wavelengths of 720, 725, 730, 735, and 740 nm, showing RBMs resonantly excited through E22 optical transitions. (c) Comparison of RBMs resonantly excited through E22 and
E11 optical transitions with degenerate pump–probe pulses with center wavelengths at 765 and 965 nm, respectively. Reproduced from Ref. [13].
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the Boltzmann equation depends on the excitation laser energy and
also contains the electron-photon matrix element Mop for light
polarized along the tube axis, so that we have the proportionality
df l / Ml
op: ð5:3Þ

In Fig. 31, we plot the coherent RBM phonon amplitude Qm

(dots) and the absorption coefficient (dashed line) for an (11,0)
nanotube as a function of Elaser. Here Qm can be defined by taking
the vibration of the coherent phonon amplitude to be Q(t) = Qm

cos(x t), where the origin of time t = 0 is given by the first maxi-
mum (minimum) of Q(t) and Qm > 0 and Qm < 0 correspond to an
initial tube diameter expansion and contraction, respectively. From
Fig. 31, we see that the pump light is strongly absorbed at the Eii

energies where many photoexcited carriers give rise to a large
driving function S(t) in Eq. (5.2) and thus an enhanced Qm. As
shown in Fig. 31, Qm has a negative sign at E11, indicating that
the tube diameter initially shrinks and oscillates about a smaller
diameter than the original diameter for Elaser = E11, while at E22

and higher energies (e.g.,E33 or E44) Qm> 0, that is, the tube diame-
ter initially expands and oscillates about a larger diameter. In gen-
eral, according to the Franck–Condon principle, an electron is
excited without changing the coordinate of the lattice. When a
photoexcited electron occupies an anti-bonding electronic state,
the adiabatic potential minimum for the ground state is no longer
a minimum for the excited state and thus the lattice starts to vi-
brate around a new adiabatic potential minimum for the photoex-
cited anti-bonding states. This minimum energy is generally
located at a larger coordinate than that of the ground state, and
thus the lattice usually expands. However, this is not always cor-
rect in the case for the RBM coherent phonons of SWCNT, where
the tube diameter can either expand or contract depending on



Fig. 26. Polarization-dependent pump–probe spectroscopy of highly aligned single-wall carbon nanotubes. (a) Type I configuration, where the pump and probe polarizations
are fixed and the sample orientation is rotated by an angle h. (b) Type II configuration, where the probe and sample orientations are fixed and the pump polarization is rotated
by an angle /. Reproduced from Ref. [14].

Fig. 27. Experimental differential transmission of coherent RBM oscillations in
highly aligned single-wall carbon nanotubes for different polarization angles in (a)
Type I and (b) Type II configurations (see Fig. 26). Reproduced from Ref. [14].

Fig. 28. Experimental integrated CP power as a function of theta for Type I (black
triangles) and phi for Type II (red triangles) orientations. Type I experiment is fit to
A cos8(h + Dh) + B, and Type II is fit to A cos8(/ + D/) + B, where A and B are
background subtraction and rescaling parameters, and standard deviations for the
random tube axis misalignment Dh and D/ are restricted to the same misalignment
parameter for both Type I and Type II. Reproduced from [14]. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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the excitation energy. Here we find that such an anomalous behav-
ior occurs as a result of the linear dependence of electronic energy
and the details of the electron–phonon interaction.

In order to understand this phenomenon, let us consider the
magnitude and phase of the oscillation amplitude Q(t) driven by
S(t) in Eq. (5.2). Since df l / Ml

op, the magnitude of oscillations
should be proportional to the product of the electron–phonon
and optical electron-photon matrix elements:

jQmj / jMel�phjjMopj; ð5:4Þ

where the electron–phonon and optical electron-photon matrix ele-
ments are defined in Ref. [19]. In this equation, the electron-photon
matrix element Mop describes the generation of photoexcited carri-
ers due to the laser pump pulse, while the electron–phonon matrix
element is related to the strength of the interaction, which creates
the coherent phonon vibration. Since dfl(k) is positive if there is no
gain in the system, the initial phase of Q(t) is determined only by
the sign of Ml

el�phðkÞ which is summed over all cutting lines l and
all k points. The values of jMel�phj and jMopj for a fixed selection
of energy and (n,m) thus determine the excitation energy and chi-
rality dependence of the coherent phonon amplitudes.

We can discuss the type dependence of coherent RBM phonon
amplitudes by comparing two semiconducting zigzag nanotubes
of different 2n + m families and type-I and -II for mod (2n + m,
3)= 1 and mod (2n + m, 3)= 2, respectively. In some references,
researchers also use the n - m family notation, in which mod 0,
1, 2 denote mod (n – m, 3)= 0, 1, 2, respectively. In this case,
type-I (II) corresponds to mod 2 (1). In Fig. 32, we plot the elec-
tron–phonon matrix elements for RBM coherent phonons in the
(11,0) (type-I) and (13,0) (type-II) nanotubes as a function of the
1D wave vector k. The k-dependence of Ml

el�phðkÞ for the RBM pho-
non is shown for the two cutting lines near the K (or Dirac) point in
the hexagonal 2D Brillouin zone, that is, for E11 and E22 (see
Fig. 33). As can be seen in Fig. 32, Ml

el�phðkÞ can be either positive
or negative depending on Eii and the nanotubes type. Also, accord-
ing to Eq. (5.2), if we pump near the Eii band edge, the electron dis-
tributions would be localized near k = 0 in the 1D Brillouin zone of
the zigzag nanotubes, for which the kii points for the Eii energies lie
at k = 0. Therefore, the positive (negative) values of S(t) at the E22

(E11) transition energy are determined by the negative (positive)
values of Ml

el�phðkÞ near k = 0. For the two nanotubes, the signs of



Fig. 29. (a) Time-domain transmitted intensity modulations of single-layer (upper trace, blue) and multi-layer (lower trace, red) graphene films. (b) FFT spectra of (a). The G-
peak frequency of 47.74 THz (1591.2 cm�1) obtained for the single-layer sample is higher than that of the multi-layer sample at 47.60 THz (1586.5 cm�1). A strong D-peak is
observed only for the single-layer sample at 39.30 THz (13079.8 cm�1). (For interpretation of the references to colours in this figure legend, the reader is referred to the web
version of this paper.)

Fig. 30. (left) Transient reflectivity changes in the high-frequency coherent vibrations in graphene on silicon with different layer numbers and HOPG. (middle) Fourier
transform of the time-domain traces in (left). The red curves are Lorentzian fits. (right) Time–frequency map of the high-frequency coherent phonons in four-layer graphene.
The dashed lines show the center frequencies of the G- and D-modes, while the arrows indicate the stationary values of the G- and D-modes. Adapted from Ref. [39]. The
copyright of this paper belongs to the Japan Society of Applied Physics.

Fig. 31. The coherent RBM phonon amplitude Qm (dots) for an (11,0) zigzag tube as
a function of laser excitation energy Elaser. For clarity, Qm is plotted in units of 0.0259
Å. A positive (negative) sign of the vibration amplitude denotes a vibration whose
initial phase corresponds to an expanding (shrinking) diameter. The absorption
coefficient (dashed line) versus Elaser is shown for comparison. Reproduced from
Ref. [19].
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the electron–phonon matrix elements differ at E11 and E22. The rea-
son is that for type-I and type-II nanotubes the E11 and E22 cutting
line positions with respect to the K point in the 2D graphene Brill-
ouin zone are opposite to each other as shown in Fig. 33 [96].
Depending on the cutting line positions relative to the K point,
the corresponding Ml

el�phðkÞ for a given cutting line is negative in
the region to the right of the K point and positive in the region
to the left [97]. This will be proved in the following paragraphs
using an effective-mass theory [64]. From this argument, we pre-
dict that the type-I (type-II) zigzag nanotubes will start their
coherent RBM phonon oscillations by initially decreasing (increas-
ing) the tube diameter at E11, while at E22 the behavior is just the
opposite, as shown in Fig. 31.

The electron–phonon matrix element Mel�ph for the photoexcit-
ed electron is basically a sum of conduction band (c) and valence
band (v) electron–phonon matrix elements, which represent the
electron and hole contributions, respectively [94,97,99]:

Mel�ph ¼ MC
el�ph �MV

el�ph � hcjHel�phjci � hvjHel�phjvi; ð5:5Þ

where Hel�ph is the SWCNT electron–phonon interaction Hamilto-
nian. In a nearest-neighbor effective-mass approximation, the



Fig. 32. RBM electron–phonon matrix elements of (a) (11,0) and (b) (13,0) zigzag
nanotubes within the ETB approximation. T is the nanotube translational unit cell
vector, which defines the unit cell length in 1D real space along the tube axis.
Reproduced from Ref. [29].

Fig. 33. Cutting lines for (a) (11,0) and (b) (13,0) zigzag nanotubes near the
graphene K point. Black and red solid lines denote the E11 and E22 cutting lines,
respectively, while the dotted lines correspond to higher cutting lines. The angle
H(k) is measured counterclockwise from a line perpendicular to the cutting lines,
with the positive direction of the line to the right of the K point. Here H(k) is shown
for a k point on the cutting line for both SWCNTs. The difference between the type-I
and type-II families can be understood from the position of the E11 or E22 cutting
lines relative to the K point. Adapted from Ref. [19].
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RBM Hel�ph for an (n,m) SWCNT with a chiral angle h and diameter
dt can be written as [64]:

Hel�ph ¼
2Sr

dt

gon � goff
2 ei3h

� goff
2 e�i3h gon

 !
; ð5:6Þ

where gon (goff) is the on-site (off-site) coupling constant. Here
sr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=2MxRBM

p
is the zero point phonon amplitude for the RBM,

where xRBM is the phonon frequency and M is the total mass of
the carbon atoms within the unit cell. To obtain Mel�ph in Eq.
(5.5), we adopt the following two wave functions:

Wc ¼
eikrffiffiffiffiffiffi

2S
p e�iHðkÞ=2

eþiHðkÞ=2

 !
;Wv ¼

eikrffiffiffiffiffiffi
2S
p e�iHðkÞ=2

�eþiHðkÞ=2

 !
; ð5:7Þ
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Fig. 34. RBM electron–phonon matrix elements of (a) (11,0) and (b) (13,0) nanotubes cal
elements near k = 0 are comparable with the results in Fig. 32. Panel (c) shows the matrix
to the fourth-nearest neighbors. The results including fourth-nearest neighbors exactly
for conduction and valence states, respectively, which are suitable
near the graphene K point. In Eq. (5.7), S is the surface area of graph-
ene and H(k) is an angle at the K point measured from a line per-
pendicular to the cutting lines (see Fig. 33). By inserting the wave
functions in Eq. (5.7) and the Hamiltonian in Eq. (5.6) into Eq.
(5.5), we obtain

Mel�ph ¼
sr

dt
f�2goff cos½HðkÞ	 þ 3hg: ð5:8Þ

Using the results of the density-functional calculation by Porezag
et al. [100], we adopt the off-site coupling constant goff = 6.4 eV
and the on-site coupling constant gon = 17.0 eV, which are calcu-
lated for the first-nearest-neighbor carbon–carbon distance. How-
ever, gon has no effect on the electron–phonon matrix element
since it vanishes in Eq. (5.8) if we simply adopt a simple tight bind-
ing model in which the valence and conduction energy bands are
symmetric with respect to the Fermi energy. If we consider the
asymmetry between the valence and conduction bands, the effect
of finite gon will appear [101] and give a small correction to Eq.
(5.8). Within the present approximation, we do not consider such
an asymmetry since the chirality dependence of the electron–
phonon matrix element is already described by the cos[H(k)] term,
which will give a positive or negative sign in front of goff depending
on the position of k defined in Fig. 33.

For zigzag nanotubes, Eq. (5.8) also explains the dependence of
Mel�ph on the cutting line (or k) position. Let us take the examples
in Fig. 33, in which we show the cutting lines for the (11,0) and
(13,0) nanotubes. The cutting line for the (11,0) [(13,0)] tube is
to the right (left) of the K point, giving a positive (negative)
cosH(k) and thus a negative (positive) Mel�ph for the E22 transition.
According to Eq. (5.2), the negative (positive) Mel�ph corresponds to
an initial increase (decrease) of the tube diameter. In this way, the
chirality dependence of the coherent phonon amplitude is simply
determined by the electron–phonon interaction. However, we
should note that this simple rule does not work well for E33 and
E44, as can be seen in Fig. 31. For instance, the coherent phonon
amplitude at E44 has the same sign as that at E33 although their cut-
ting line positions are opposite each other with respect to the K
point. The reason for the breakdown of this simple rule is that
the cutting lines for E33 and E44 are far from the K point so that
the wave functions of Eq. (5.7) are no longer good approximations.
In this case, the ETB wave functions (not the effective-mass ones)
are necessary for obtaining the coherent phonon amplitudes.

In Fig. 34, we then plot the electron–phonon matrix elements of
Eq. (5.8) for the (11,0) and (13,0) nanotubes, where the on-site
term (gon) disappears and only the off-site term (goff) contributes
to Mel�ph. It can be seen that the effective-mass theory (see
Fig. 34(a) and (b)) reproduces the ETB calculation results only near
0.5 1
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culated within the effective-mass theory using goff = 6.4 eV. In (a) and (b), the matrix
elements of an (11,0) nanotube calculated within the ETB model for interactions up

reproduce the results in Fig. 32(a). Reproduced from Ref. [19].



Fig. 35. The lattice response of SWCNTs with diameters in the range 0.7–1.1 nm is
mapped onto the unrolled graphene lattice specifying the tube chiralities (n,m). In
this map Qm is expressed in terms of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=2MxRBM

p
. Red and blue colored hexagons

denote the SWCNTs whose vibrations start by increasing or decreasing their
diameters, respectively. For clarity, the shrinking tubes (blue colored hexagons) are
also specified by underlining their (n,m). The laser excitation energies are selected
within the range 1.5–3.0 eV. For each (n,m) tube, the corresponding Eii (in eV) found
within this energy region is listed on each hexagon with the label. The calculated
results for the (7,4) and (6,6) nanotubes are not shown in this figure because their
EL

11 > 3:0 eV and the (6,6) tube gives a negligibly small Qm. We should also note that
the Eii values given in this map, especially for the near-zigzag SWNTs, are not
always matched with the experimental data because the calculation in the single-
particle ETB approximation neglects the excitonic environmental effects. Yet the
trends of coherent phonon amplitudes remain unaffected by the discrepancies
between the ETB and experimental data. Adapted from Ref. [19].

Fig. 36. Schematic diagram showing lattice structures and translational unit cells
for armchair (aGNR) and zigzag (zGNR) graphene nanoribbons. The width of the
nanoribbons is W. Adapted from [85].
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kii = 0 (Figs. 32(a) and (b)). However, the first-nearest-neighbor
effective-mass model (Fig. 34(a) and (b)) cannot reproduce the
ETB matrix element results (Fig. 32) at k far from kii = 0 because
in the ETB calculation we consider not only asymmetry of the en-
ergy bands but also electron–phonon interaction up to fourth near-
est neighbors. To stress this fact, in Fig. 34(c) we show the k
dependence of Mel�ph for the (11,0) tube within the ETB model
for interactions up to the fourth-nearest neighbors. Based on this
figure, we conclude that a more exact analytical expression for
Mel�ph at k far from the kii should take into account the longer-
range electron–phonon interactions. Nevertheless, the first-
nearest-neighbor effective-mass theory has already given physical
insight into the k-dependent Me�ph.

To consider the more general family behavior of the RBM coher-
ent phonon amplitudes, we recalculated Qm using the ETB program
for 31 different SWCNT chiralities with diameters of 0.7–1.1 nm
and for photo excitations at Eii in the range 1.5–3.0 eV. The results
are shown in Fig. 35. Note that, in addition to the semiconducting
SWCNTs, we also give some results for metallic SWCNTs. It is
known that the densities of states for Eii in metallic SWCNTs are
split into lower EL

ii and higher EH
ii branches, except for the armchair

SWCNTs [102]. Here we consider Qm in metallic SWCNTs only at
EL

11. The cutting line for EL
11 is located to the right of the K point.

We can see in Fig. 35 that all the metallic SWCNTs start vibrations
by increasing their diameters at EL

11. The reason is the same as in
type-II nanotubes, where the cutting lines for the E11 transitions
are located to the right of the K point, giving a negative Mel�ph

(hence a positive Qm) as explained within the effective-mass the-
ory. On the other hand, at EH

11, the nanotubes should start their
coherent vibrations by decreasing their diameters. In the case of
armchair nanotubes, for which EL

11 ¼ EH
11, we expect that no vibra-

tion should occur because the two contributions from EL
11 and EH

11

should cancel each other.
For semiconducting nanotubes, we see that most of the type-I
(type-II) nanotubes start vibrating at lower energies by decreasing
(increasing) their diameters and at higher energies by increasing
(decreasing) their diameters. In a few cases, e.g., (7,6), (9,5), and
(10,5) nanotubes, the deviation from this rule might come from
the 3h term in Eq. (5.8), especially for the near-armchair nanotubes
where h approaches p/6. As mentioned previously, we consider
that in the case of armchair nanotubes, for example the (6,6) nano-
tube, which is metallic, the coherent phonon amplitude becomes
small because of the trigonal warping effect [102]. The exclusion
of both excitonic and environmental effects may also be a reason
for this deviation because the transition energies are also shifted
to some extent. Nevertheless, our results should stimulate further
work by experimentalists to check for consistency with this
prediction.

5.2. Coherent RBLM phonons in high symmetry GNRs

Next, we extend our coherent phonon theory to the cases of zig-
zag graphene nanoribbons (zGNRs) and armchair graphene nano-
ribbons (aGNRs). In GNRs, the rotational degree of freedom about
the nanotube axis is lost and the number of CP active phonon
modes is equal to the number of AB carbon dimers in the nanorib-
bon translational unit cell. The most easily observed of these CP
modes is the one with the lowest frequency, namely the radial
breathing like mode (RBLM) in which the width of the GNR is
vibrating.

The lattice structure for aGNRs and zGNRs is shown schemati-
cally in Fig. 36. These ribbons are denoted NabaGNR and NabzGNR,
respectively, where Nab is the number of AB carbon dimers in the
translational unit cell [103,104]. In zigzag ribbons, the length L of
the translational unit cell is a and the width W of the ribbon is
ðNab � 1Þ

ffiffi
3
p

2 a, where a = 2.49 Å is the hexagonal lattice constant
in graphene. In armchair ribbons, the translational unit cell length
is

ffiffiffi
3
p

a and the ribbon width is ðNab � 1Þ 1
2 a. Note that in zigzag and

armchair ribbons with the same number of atoms per unit cell, the
area of the unit cells are equal.

5.2.1. Zigzag GNRs
First we consider zGNRs. Using a treatment similar to that in the

nanotube case, we discuss the initial expansion and contraction of
the nanoribbon width in coherent radial breathing like mode
(RBLM) oscillations. These nanoribbons are basically metallic be-
cause of the edge states at the Fermi energy in the zGNRs [105].

Since coherent phonon spectroscopy gives direct phase infor-
mation on the coherent phonon amplitude, it is instructive to
examine Smax, i.e., the maximum value of S(t) as a function of pump
photon energy. Fig. 37(a) is the power spectrum of Q(t) at the RBLM



Fig. 37. (a) Coherent phonon power at the RBLM frequency (29 meV), (b) The value
of Smax, and (c) Initial absorption spectrum as a function of photon energy for 7
zGNR. Adapted from [20].
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frequency. In Fig. 37(b) we plot Smax as a function of pump photon
energy. For comparison, the absorption coefficient is plotted in
Fig. 37(c). Near the band edge, we see from Fig. 37(b) that the
pump light is strongly absorbed at the V2C1 and V3V1 peaks. Here
VnCm denotes transitions between the low lying nth hole band and
the higher lying mth electron band. The resulting increase in the
photoexcited carrier density increases the coherent phonon driving
function and enhances the coherent phonon oscillation ampli-
tudes. In other words, the coherent phonon driving function near
the band edge is determined by the strength of optical absorption
between the lowest few hole bands and the localized edge states
V1 and C1. At energies above 3 eV, Smax changes sign and the nano-
ribbon initially contracts.

It is important to plot the CP intensity as a function of nanorib-
bon width because the RBLM CP amplitude of zGNRs quickly de-
creases with increasing nanoribbon width. We fix the pump and
probe electric polarization vectors to be parallel to the nanoribbon
Fig. 38. For zigzag nanoribbons excited by Gaussian laser pulse with pump and probe pol
V2C1 and V3V1 transitions as a function of Nab, the number of carbon dimers in the zigzag
(b) we plot Smax for the V2C1 and V3V1 transitions. The ribbon width for each value of
axis as this is the polarization for which the CP intensity is greatest.
In Fig. 38(a), the RBLM CP intensity for the V2C1 and V3V1 transi-
tions as a function of the number of carbon dimers in the zigzag
nanoribbon unit cell is plotted against the left axis and the RBLM
frequency is plotted against the right axis. In Fig. 38(b), we plot
the coherent driving function amplitude Smax as a function of Nab

for the V2C1 and C3V1 transitions. We have studied all zGNR nano-
ribbons for Nab ranging from 6 to 17 and find similar results. The
driving function is positive for low energies (up to just below
3 eV) and then becomes negative for all cases.
5.2.2. Armchair GNRs
Armchair GNRs belong to one of three families depending on

the mod number: mod (Nab, 3). Based on a simple band structure
calculation, we classify mod 0 and mod 1 aGNRs as semiconductors
and mod 2 aGNRs as metals [103]. However, unlike the case in zig-
zag nanoribbons [105], there are no localized edge states near the
band edge. Armchair nanoribbons have direct gaps that arise from
quantum confinement and edge effects and all the electronic wave
functions near the band edge are distributed throughout the width
of the ribbon.

We examine Smax as a function of pump photon energy and our
results for a 6 aGNR mod 0 semiconducting nanoribbon are shown
in Fig. 39(a), where Smax is shown as a function of pump photon en-
ergy. For comparison, the absorption coefficient is also plotted in
the lower panel of Fig. 39(a). Near the band edge, we see from
Fig. 39(a) that the pump light is strongly absorbed near the E11

and E22 peaks. The resulting increase in the photoexcited carrier
density increases the coherent phonon driving function and en-
hances the coherent phonon oscillation amplitudes. Photoexcita-
tion by the pump causes the nanoribbon to initially expand for
pump photon energies near the E11 transition and to initially con-
tract for pump photon energies near the E22 transition. We find this
to be true for all mod 0 semiconducting nanoribbons. Qualitatively,
different results are obtained for mod 1 aGNRs. In Fig. 39(b) we
plot Smax as a function of pump photon energy for a 7 aGNR mod
1 nanoribbon and find that photoexcitation by the pump causes
the nanoribbon to initially contract for photon energies near the
E11 peak and initially expand for photon energies near the E22 peak.
This is found to be true for all mod 1 semiconducting nanoribbons.
In Fig. 39(c) we show results for an 8 aGNR mod 2 metallic nano-
ribbon excited by a laser pulse polarized parallel to the ribbon
length. From Fig. 39(c), we see that photoexcitation by the pump
causes the nanoribbon to initially expand for photon energies near
the transition. For photon energies near the E22 transition, the sit-
uation is more ambiguous.
arization vector parallel to ribbon length, in (a) we plot the RBLM CP intensity for the
unit cell, on the left axis. On the right axis we plot the RBLM frequency x in meV. In

Nab can be read from the upper axis. Adapted from [20].



Fig. 39. The coherent phonon power, the value of Smax, and the initial absorption spectrum are plotted as a function of photon energy for (a) 6 aGNR mod 0 nanoribbon (RBLM
frequency = 59 meV) , (b) 7 aGNR mod 1 nanoribbon (RBLM frequency = 51 meV), and (c) 8 aGNR mod 2 nanoribbon (RBLM frequency = 44 meV). The excitation is due to a
Gaussian laser pulse with pump and probe polarization vectors parallel to the ribbon length. Adapted from [20].
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Following our previous study on the nanotube system [19], we
can also examine the k-dependent electron–phonon interaction
within the effective mass approximation to explain why some
GNRs start their coherent RBLM oscillations by initially expanding
while others start the oscillations by initially shrinking [20]. In the
present discussion we will focus our attention on the aGNRs, in
which we can directly use the wavefunctions formulated in Eq.
(5.7). In the case of zGNRs, we have to consider a special localized
wavefunction due to the presence of edge states at which the Eii

transition occurs. Using such a wavefunction, we obtain a constant
electron–phonon matrix element that does not depend on mod
(Nab, 3) of the zGNRs, and thus is consistent with our results in
Section 5.2.1.

By a similar calculation as in Eqs. (5.6)–(5.8), we obtain the elec-
tron–phonon matrix element for the RBLM in aGNRs:

Mel�ph ¼ uarm½�2goff cos HðkÞ	; ð5:9Þ

where uarm is a ribbon width- or Nab-dependent phonon amplitude
and H(k) as defined in Fig. 40 (see also Appendix D in Ref. [20]).
From Eq. (5.9), we can analyze the Nab and Eii dependence of the
aGNR initial lattice response. First of all, we should note that
goff = 6.4 eV and uarm are always positive [20], while cos H(k) can
either be positive or negative depending on the value of k at which
Fig. 40. Cutting lines for (a) mod 0 aGNR and (b) mod 1 aGNRs near the Dirac K
point. To make clear the definition of H(k), in this figure is shown for an arbitrary k
at E11. In fact, in the case of mod 0 and mod 1 aGNRs the E11 transitions occur at
H(k) = 0 and H(k) = p, respectively. The difference between the mod 0 and mod 1
aGNRs can be understood from the position of the E11 or E22 cutting lines relative to
the K point. Adapted from [20].
the Eii transition occurs. According to the definition of the driving
force in Eqs. (5.1) and (5.2), a negative (positive) Mel�ph value corre-
sponds to a positive (negative) Smax. Therefore, a positive (negative)
cos H(k) is related to a contraction (expansion) of the ribbon width.
Using this argument, we can classify the aGNR lattice response
based on the aGNR types. For example, let us consider semiconduct-
ing mod 0 aGNRs and mod 1 aGNRs. The cutting line position for
their E11 and E22 optical transitions are just opposite to each other.
For a mod 0 aGNR, we see that cosH(k) becomes positive (negative)
at E11(E22), and thus the aGNR starts the coherent phonon oscilla-
tions by expanding (shrinking) its width. This can be seen in the
illustration of H(k) in Fig. 40. The opposite behavior is true for
mod 1 aGNRs.

However, the driving force trends for the mod 2 metallic aGNRs
(see Fig. 41) cannot be explained nicely by the effective mass the-
ory for several reasons. The main reason is that, in the metallic
aGNRs, there are two cutting lines with the same distance from
the K point, which can be assigned as the lower and higher
branches of an Eii transition. Both branches contribute to a specific
transition and thus we have to sum up the matrix elements
from each contribution to obtain Mel�ph. For example, if the 1D
k-points for the lower and higher branches of Eii are the
same, the matrix elements will cancel each other because
cosH(k) + cos(p �H(k)) = 0. In this case, the CP amplitude will
be generally small for the mod 2 metallic aGNRs compared to the
mod 0 or mod 1 semiconducting aGNRs. In the realistic situation,
we always have slightly different k-points for the lower and higher
branches due to the trigonal warping effect [102], from which the
nonzero Mel�ph value gives information about an expansion or
contraction of the ribbon width.

Near the E11 transition, the metallic aGNR initial lattice re-
sponse is always an expansion for all Nab. On the other hand, near
the E22 transition, the response is expected to be always a contrac-
tion, though we see in Figs. 41(b)–(d) the trend does not hold for
larger Nab. We notice that the difference dE = E22 � E11 might deter-
mine whether or not the lattice response at the E22 feature of a gi-
ven mod 2Nab aGNRs will clearly follow our effective mass theory.
We guess that if dE is large enough (around 2 eV as in the 8 aGNR),
the lattice response at E22should not be ambiguous. However, dE
decreases with increasing Nab as can be understood from a cutting



Table 1
Dependence of CP amplitude of a GNR on mod (Nab,3) for E11 and E22. Reproduced
from Ref. [20].

Family E11 E22

mod 0 Expand Contract
mod 1 Contract Expand
mod 2 Expand Expand or contract

Fig. 41. Driving force Smaxand initial absorption spectrum (bottom, redline) plotted as a function of photon energy for several mod 2 metallic aGNRs: (a) Nab = 8, (b) Nab = 11,
(c) Nab = 14, and (d) Nab = 17. Positive (negative) Smax at E11 (E22) corresponds to an expansion (contraction) of the ribbon width. Adapted from [20]. (For interpretation of the
references to colours in this figure legend, the reader is referred to the web version of this paper).
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line argument [96]. Thus, the lattice response at E22 for the larger
mod 2 aGNRs becomes opposite to that for the smaller mod 2
aGNRs (e.g., Nab = 2, 5, 8).

We should also note that the E11 and E22 values of the mod 2
metallic aGNRs are close to the order of E33 and E44 values for
the mod 0 and mod 1 semiconducting aGNRs. This gives another
reason why the effective mass theory cannot explain the metallic
aGNR trends. In this energy region, the nearest-neighbor effective
mass theory should be extended to include longer-range nearest-
neighbor interactions. Finally, we summarize the lattice behavior
at E11 and E22 transitions for all families of aGNRs in Table 1:
6. Summary

We have generated and detected coherent phonon lattice vibra-
tions in SWCNTs and graphene corresponding to the RBM and G-
mode using ultrashort laser pulses. Coherent phonon spectroscopy
has several advantages, including excellent resolution and narrow
line widths, no Rayleigh scattering and no photoluminescence sig-
nal, and direct measurement of the vibrational dynamics, which
contains phase information and decay times. The ability of CP mea-
surements to trace the first derivative of the excitonic absorption
peaks of specific chirality (n,m) tubes will allow in-depth study
of the line shape of these resonances. In addition, chirality-
selective excitations of coherent RBM oscillations in SWCNTs can
be produced by implementing multiple pulse trains with repetition
rates matched to (n,m) specific RBM frequencies. We obtained
single-chirality information for many distinct tube chiralities and
extracted detailed information about the phase and modulation
of the absorption, leading to an experimental confirmation that
for (11,3) SWCNTs the lattice initially expands in response to the
pump pulse.

We have demonstrated that coherent G-mode phonons having a
resonant frequency of approximately 47.7 THz are generated by an
impulsively stimulated Raman scattering (ISRS) process. Two dif-
ferent detection mechanisms in single-walled carbon nanotubes
(SWCNTs) and graphene were used. In SWCNTs, coherent G-mode
phonon oscillations were detected through stimulated Stokes and
anti-Stokes Raman scattering process by performing spectrally-
resolved pump–probe measurements. The probe energy depen-
dence of the oscillation amplitude and the preferential occurrence
between SSRS and SARS for the chirped pulses were explained
within the mechanism of ISRS with spectrally broad pulses.

When a pulse to pulse interval in multiple pulse trains corre-
sponds to the period of a specific Raman mode frequency, the fre-
quency that are matched to the repetition rate of the multiple
pulse trains was generated with increasing oscillatory response
to each pulse, while others were diminished coherent response.
Using the tailored optical pulse trains generated by a pulse-shaping
technique, we selectively excited and probed coherent lattice
vibrations of the radial breathing modes at around 6–8 THz of
specific chirality SWCNTs within an ensemble sample of various
different chiralities. Such coherent phonon signals provide
chirality-specific information about the phase and modulation of
the absorption as a function of time.

To explain our experimental results, we have developed a
microscopic theory using a tight-binding model for the electronic
states and a valence force field model for the phonons. We find that
the CP amplitudes satisfy a driven oscillator equation with the
driving term depending on photoexcited carrier density. We find
that the RBM CP amplitudes are very sensitive to changes in exci-
tation energy and depend strongly on chirality. Our model predicts
the overall trends in the relative strengths of the CP signal both
within and between different (2n + m) families. We also theoreti-
cally analyze how the tube diameter changes in response to
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femtosecond laser excitation and under what conditions the diam-
eter will initially increase or decrease. Finally, we developed a
microscopic theory for CP generation and detection in graphene
nanoribbons. We examine the CP radial breathing like mode
(RBLM) amplitudes as a function of excitation energies and nano-
ribbon type. For photoexcitation near the optical absorption edge,
the CP driving term for the RBLM is much larger for zigzag nanorib-
bons where the strong transitions between localized edge states
provide the dominant contribution to the CP driving term. Using
an effective mass theory, we explain how the armchair nanoribbon
width changes in response to laser excitation.
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